Tsatu logo
ISSN: 2524-0714

Please use this identifier to cite or link to this item: http://elar.tsatu.edu.ua/handle/123456789/12345
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShcherbyna, Valentyna-
dc.contributor.authorЩербина, Валентина Вікторівна-
dc.contributor.authorЩербина, Валентина Викторовна-
dc.contributor.authorMaltseva, I. A.-
dc.contributor.authorMaltsev, Y. I.-
dc.contributor.authorSolonenko, A. N.-
dc.date.accessioned2020-11-23T11:22:35Z-
dc.date.available2020-11-23T11:22:35Z-
dc.date.issued2017-
dc.identifier.urihttp://elar.tsatu.edu.ua/handle/123456789/12345-
dc.description.abstractThe study of the processes of restoration of species richness and productivity of steppe ecosystems after fires is an urgent problem that affects not only the conservation of biodiversity but also the maintenance of pasture resources. This article presents the results of a study of post-pyrogenic effects in steppe ecosystems, taking into account changes in the species composition of cyanoprokaryotes and algae that are art of the biological soil crust, which performs ecologically important functions in xerophytic ecosystems. The investigations were carried out in virgin and post-pyrogenic steppe ecosystems of the “Troitsk Clough” reserve (Zaporizhia region, Ukraine). For three years, the dynamics of the projective cover and the height of the vegetation cover in virgin areas of herbs-fescue-feather-grass and fescue-feather-grass steppes was studied as well as within two ecosystems of post-pyrogenic development after fires that occurred in the spring and winter periods. We discovered that restoration of the herbs-fescue-feather-grass and fescue-feather-grass steppes after fires occurs at different rates. The cause of the slow restoration of vegetation cover can be its severe damage by fire at the beginning of the vegetation season and the development of erosion processes. The number of species of cyanoprokaryotes and algae in the biological soil crust of virgin and post-pyrogenic ecosystems is not significantly different. It varies from 35 to 49 species. The greatest diversity is noted for Cyanoprokaryota. Chlorophyta is in the second place. Among the dominants, the filamentous forms of Cyanoprokaryota prevail. Nostoc edaphicum was noted as a nitrogen fixing representative. The similarity of the species lists of cyanoprokaryotes and algae of post-pyrogenic and virgin ecosystems, according to the calculated Jaccard coefficient, varies from 49.1% to 55.3%. This indicates a strong specificity of the composition of cyanoprokaryotes and algae in post-pyrogenic biological soil crusts. Changes in their composition reflect different stages of post-pyrogenic succession. In the first year after a fire, there is a slight increase in species richness, which is a consequence of the favorable effect of increasing the amount of mineral substances in the soil after the organic matter has burned out. The “pioneer” group includes: Phormidium autumnale, Ph. dimorphum, Ph. retzii, Ph. (Leptolyngbya) henningsii, Luticola mutica, Hantzschia amphioxys. Gradually this effect is leveled and the species richness of cyanoprokaryotes and algae is stabilized at a level peculiar for this type of ecosystem.uk
dc.language.isoenuk
dc.relation.ispartofseriesRegulatory Mechanisms in Biosystems;Т. 8, № 4 (С. 633-638)-
dc.subjectsteppeuk
dc.subjectfireuk
dc.subjectalgaeuk
dc.subjectcyanoprokaryotesuk
dc.subjectprojective coveruk
dc.subjectbiological soil crustuk
dc.subjectpost-pyrogenic successionuk
dc.titlePost-pyrogenic changes in vegetation cover and biological soil crust in steppe ecosystemsuk
dc.typeArticleuk
Appears in Collections:кафедра Геоекологія та землеустрій

Files in This Item:
File Description SizeFormat 
2317.pdf207.35 kBAdobe PDFThumbnail
View/Open
Show simple item record ???jsp.display-item.check???


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.