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Abstract. In theoretical study of most of agricultural machines working bodies there is a need of the modeling of material particles (material 
points) motion on their working surfaces. Questions of such modeling in cases when the specified surfaces are give to material points 
movement with difficult trajectories are especially difficult. Objective of this research is to develop the basic provisions of complex 
movement theory of material point. When carrying out research methods of modeling theory, theoretical mechanics, higher mathematics, in 
particular differential geometry, methods of drawing up programs and numerical calculations on the personal computer are used. As a result 
of the conducted theoretical research the complex movement of material point which relative movement happens in a moving trihedron of 
curve which is defined by the natural equations is considered. The figurative movement of a trihedron is defined by differential 
characteristics of curve. Competency of use of Frenet formulas for finding absolute speed and point acceleration in projections on unit 
vectors of the moving trihedron is proved. As a result of numerical calculations on the personal computer there were found absolute 
trajectories of material point movement and qualitative assessment of received results was carried out. 
KEYWORDS: TRIHEDRON, COMPLEX MOVEMENT, MATERIAL POINT, ABSOLUTE SPEED, ACCELERATION, THEORY 

 

1. Introduction 

The motion of the material point along the plane (the 
gravitational surface, the rough plane, etc.) has been the subject of 
research of many scientists, with a worldwide reputation ranging 
from Galileo, Huygens, Newton, Euler, Ostrogradsky and others.As 
a most fundamental studies of the motion of a material particle on 
frictional surfaces of agricultural machines should be considered the 
works of academician Vasilenko P.M [1] and other domestic 
scientists  academicians Zaika P. M, Berg B. A, and also 
Grigorieva S. M., Melnikov S. V. and others. A considerable 
number of analytical problems in the theory of agricultural 
machines still need the application of the theory of motion of a 
material point (particle) or a solid body over surfaces that are used 
in the design of new structures. 

2. Preconditions and means for resolving the 
problem 

2.1. Formulation of the problem 

The theory of the complex motion of a material point has a 
completed form and does not even need any refinement. It is based 
on the fact that the motion of a point is investigated simultaneously 
with respect to two coordinate systems. One of them (the main one) 
is assumed to be fixed, and the second one is providing relative 
motion according to a given law in relation to the fixed point. 
Generally, the relative motion of the material point is carried out in 
the relative movement of the coordinate system. The sum of these 
movements (relative and portable) creates the absolute motion of 
the material point with respect to the basic coordinate system. In 
this case, the movements (both portable and relative) are usually 
given by the dependencies in the time function. 

There is also known the natural way of specifying the motion 
of a material point, in which the velocity and acceleration are 
considered in the projections onto the units of the accompanying 
trihedron of the trajectory (the Frenet trihedron). However, in the 
available literature it is not possible to find the application of the 
Frenet trihedron as a moving coordinate system in which the 
material point is moving relatively. The development of the theory 
of the complex motion of a material point along the horizontal plane 

with the use of the Frenet trihedron is the subject of our 
investigation 

2.2. Analysis of recent research and publications  

The natural way of specifying the motion of a material point is 
considered quite well known and is widely used in studies on many 
issues in the field of mechanization of agriculture and the theory of 
agricultural machines. In this case, the vast majority of simple 
motion of material points is considered. There are known the 
examples with the use of a trihedron and Frenet formulas when 
considering the motion of a rigid body in its system, for example, an 
aircraft [2]. The kinematics of the motion of the accompanying 
trihedron of a helical line is considered in [3]. In the latest scientific 
and educational publications, the kinematics of the accompanying 
trihedron of a trajectory as a rigid body are either not considered at 
all, or are considered with reference to earlier studies and 
publications [4, 7, 8]. Meanwhile, as shown in [5, 9, 10, 11], the 
trihedron and Frenet's formulas can be successfully used in 
problems of kinematics and the dynamics of the complex motion of 
a material point, in particular when considering issues that are 
related to the study of agricultural machines. 

2.3. Purpose of the study  

As a main aim of our study is the further development of the 
theory of the complex motion of a material point along the plane 
with the application of the accompanying trihedron of the curve and 
the Frenet formulas. 

3. Results and Discussion 

At any point of the curve, three mutually perpendicular 
directions can be constructed. Single units along them (tangent, 
principal normal and binormal) form the accompanying (natural) 
trihedron of the curve or the triaxial Frenet. For a planar curve, the 
unit vectors u are in the plane of the curve, and the unit vector is 
perpendicular to it (see Fig. 1, a). 

If you move the trihedron at a given speed AV  
along the curve, 

you can determine the velocity and acceleration of any point of the 
trihedron, the magnitude and direction of which will depend on the 
curvature of the curve. The velocity of point of the trihedron will 
consist of velocity of pole (the origin of coordinates A) and velocity 
of this point in the rotational motion of trihedra around the 
instantaneous rotation axis, which coincides with the binormal hort 
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b . During a certain period of time t∆ , the trihedron moves along 
the curve to a new position, due to displacement to a distance 

s∆ and rotation through an angle α∆  (Fig. 1, b). 

 
a 

 
b 

Fig. 1. – Accompanying trihedron of the Frenet curve: 
a) position of the vector of the instantaneous rotation axis; b) to 
determine the angle of rotation ∆α when the trihedron is moved 

along the curve by a distance ∆s  (the binormal b  is projected to a 
point) 

 
The magnitude of the angular velocity ω  can be defined as the 

limiting ratio of the increment of the angle to the increase in time: 

 
0

.lim
t

d
t dt
α αω

∆ →

∆
= =

∆
 (1) 

We pass from the time parameter t to the arc coordinate s  
(paths along the arc): 

 ,A A
d d ds dV V k
dt ds dt ds
α α αω = = = =  (2) 

where k  – curvature of the curve at the current point A.  
Thus, the magnitude of the angular velocity of the trihedron 

depends on the speed of its motion along the curve and the 
curvature of the curve itself at the point where the vertex of the 
trihedron is located. 

We fix the point B rigidly in the trihedron system and we find 
its velocity. The radius-vector Br  that determines the position of the 
point B relative to the fixed coordinate system Oxy (Fig. 2) can be 
specified with the help of two vectors: Ar , which determines the 
position of the vertex of the trihedron in the coordinate system Oxy, 
and ρ , which determines the position of point B in the trihedron 
system. The value of the radius vector Br  will be: 
 B Ar r ρ= + . (3) 

 
 

Fig. 2. – Position of the point B in two coordinate systems: 
the immovable Oxy and the movable trihedron of the curve nbτ  

Let the point B in the system of the accompanying trihedron will 
be given by a vector constρ = whose components in the projections 
on unit vectors (orthes) have the value τρ  and nρ  (Fig. 2). 

We write the vector sum (3) in the projections on the axis of 
the fixed coordinate system Oxy. We will have: 

 
cos sin ;
sin cos .

B A n

B A n

x x
y y

τ

τ

ρ α ρ α
ρ α ρ α

= + −
= + +

  (4) 

Differentiating (4) with respect to time t , we find the 
projection of the velocity of point B on the coordinate axes of the 
immovable system: 

 
( )

( )

sin cos ;

cos sin .

B B B
A A A n

B B B
A A A n

dx dx ds dxV V x
dt ds dt ds

dy dy ds dyV V y
dt ds dt ds

τ

τ

ρ α α ρ α α

ρ α α ρ α α

′ ′ ′= = = − −

′ ′ ′= = = + −
 (5) 

In expressions (5) there was done the transition from the time 
parameter t to the arc coordinate s – the arc length of the curve. In 
this case, the components of expressions (5) acquire a geometric 
content [7]: 

 cos ; sin ; .A Ax y kα α α′ ′ ′= = =  (6) 
Taking into account (6), the projections of the absolute 

velocity of the point B in (5) on the axis of the immovable 
coordinate system are written as follows: 

 
( )
( )
1 cos sin ;

1 sin cos .
Bx B A n

By B A n

V x V k k

V y V k k
τ

τ

ρ α ρ α

ρ α ρ α

′= =  − −  
′= =  − +  

 (7) 

The result (7) can also be obtained from the well-known 
formula [4]: 

 ,B AV V ω ρ= + ×  (8) 

where the first component AV  is the velocity of the pole A, and the 
second ω ρ×  is the speed of the point B around the pole. 
Accordingly they can be found in this way: 

cos ;

sin .

A A A
Ax A A A A

A A A
Ay A A A A

dx dx ds dxV V V x V
dt ds dt ds

dy dy ds dyV V V y V
dt ds dt ds

α

α

′= = = = =

′= = = = =
 (9) 

0 0
cos sin sin cos 0

A

n n

x y z
V k

τ τ

ω ρ
ρ α ρ α ρ α ρ α

× =
− +

, 

from where: 

 ( ) ( ){ }sin cos ; cos sin .A n A nV k V kτ τω ρ ρ α ρ α ρ α ρ α× = − + −  (10) 

Having added the components of the projections (9) and (10) 
to the corresponding coordinate axes, we obtain the already known 
result (7). 

And now we show how it is not very difficult to find the 
absolute velocity of the point B in the projections onto the unit 
vectors of the accompanying trihedron of the curve. For 
comparison, we first do this using formula (8), and then applying 
Frenet formulas. We find the vector ω ρ×  in the projections onto 
the unit vectors of the trihedron: 

 0 0
0
A A n A

n

n b
V k V k nV k τ

τ

τ
ω ρ τ ρ ρ

ρ ρ
× = = − + . (11) 

Considering the fact that the speed of pole A in direction 
coincides with the orthom τ , ie. ,A AV V τ=  we rewrite expression 
(8) with regard to (11): 

 ( )1 .B A nV V k nk ττ ρ ρ = − +  
  (12) 

The geometric sum of the components (7) and (12) will give 
the same result: 

 ( )2 2 21 .B A nV V k k τρ ρ= − +   (13) 
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Now we consider an alternative with the using of Frenet 
formulas. The vector equation (3) in the system of the 
accompanying trihedron will be written as follows: 
 .B A nR r nττρ ρ= + +   (14) 

If we assume that the coordinates τρ  and nρ  do not change 
along the curve when the trihedron moves, that is, the point B is 
fixed in the trihedron, then its absolute velocity can be found by 
differentiating expression (14) with respect to time t. However, the 
position of the trihedron on the curve depends on the arc coordinate 
s, so when differentiating (14), it is necessary to go from the 
independent variable t   to the arc s : 

 .B B B A
A A n

d R d R ds d R d r d d nV V
dt ds dt ds ds ds dsτ

τ ρ ρ
 

= ⋅ = = + + 
  

 (15) 

In expression (15), the derivative Ad r
ds

τ= , i.e. this is a single 

unit of the tangent. The remaining derivatives – d
ds
τ  and d n

ds
 – are 

known Frenet formulas, which have a kinematic interpretation [6]. 
They are the basic formulas of differential geometry, in which the 
independent coordinate is the arc coordinate s  (we give a 
simplified version for a plane curve): 
 ; ,kn n kτ τ′ ′= = −   (16) 
where k  – the curvature of the curve, which is given by the natural 
equation ( )k k s= .  

The Frenet formulas (16) make it possible to quickly and easily 
obtain derivatives with respect to the arc coordinate s  from the unit 
vectors τ and n  in the projection on these units. In the kinematic 
interpretation, the derivatives (16) are projections of the velocities 
of the ends of unit vectors τ  and n on these units in the rotational 
motion of the trihedron [6]. Taking (16) into account, expression 
(15) assumes exactly the same form as it  was obtained in (12). 
Thus, the application of the Frenet formulas (16) makes it very easy 
to find the velocity of the point B in the rotational motion around 
the pole A, which in the other case must be found as a vector 
product (11). Even more effectively, they work when finding the 
absolute speed of point B in a complex motion, to the consideration 
of which we proceed further. 

Now we assume that the point B moves in the system of the 
accompanying trihedron, i.e. ector ρ  is a function of time: 

( )tρ ρ= . In this case, the absolute velocity of the point B will be 
determined as the sum of the transport velocity, which can be found 
from formula (12), and the relative velocity, which we obtain by 
differentiating the vector ρ  with respect to time t . However, the 
portable speed is a function of the arc coordinate s , so the relative 
speed must also be related to this independent variable: 

 .r A
d d ds dV V
dt ds dt ds
ρ ρ ρ

= = =   (17) 

Let us write the vector equation (17), which determines the 
relative velocity in the trihedron system, into two components along 
the directing vectors τ , n  and we add to the transport velocity 
(12). After grouping the terms and taking the pole velocity AV  off 
the brackets, the absolute velocity of the point B in the projections 
onto the vertices of the trihedron can be written as follows: 

 ( ) ( )1 .B A n nV V k n kτ ττ ρ ρ ρ ρ′ ′=  − + + +    (18) 
Now we can show how it is easy to obtain the result (18) with 

the help of the Frenet formulas. To do this, we differentiate 
expression (14) under the condition that the coordinates τρ and nρ  
are the functions of the arc coordinate s : 

 .B n nR n nτ ττ τ ρ τ ρ ρ ρ′ ′′ ′ ′= + + + +  (19) 
Substituting in (19) the expressions for the orthonormal 

derivatives of the trihedron from the Frenet formulas (16), we 
obtain:  

 
(1 ) ( ).

B n n

n n

R nk k n

k n k
τ τ

τ τ

τ ρ τ ρ τ ρ ρ

τ ρ ρ ρ ρ

′ ′ ′= + + − + =

′ ′= − + + +
 (20) 

Comparing equations (18) and (20), we can conclude that the 
differentiation of  equation (14) with the use of Frenet's formulas 
gives the absolute velocity of the point given in the trihedron 
system by a removable distance ( )sρ ρ=

 
in the projections onto 

the trihedron orbits at the velocity of the trihedron along the curve 
AV = 1 m·s-1. In the case where the speed AV  differs from one, each 

projection must be multiplied by an amount AV . So, we can 
formulate the following rule: 

If the point in the system of the mobile accompanying 
trihedron of the curve is given by the radius vector in the form (14), 
then in order to find its absolute velocity in the projections onto the 
units of the same trihedron, it is necessary to differentiate equation 
(14) along the arc coordinate of the curve s  using Frenet formulas 
and to multiply obtained result by the velocity of the vertex of the 
trihedron along the curve. 

The position of the point B in the system of the accompanying 
trihedron of the curve can also be specified in the polar coordinate 
system – by the distance ρ  and the angle ϕ , the count of which is 
taken from the orbit τ  (Fig. 2). In this case, the position of point B 
in the trihedron system in vector form will be written as follows: 
 cos sinB AR r npτρ ϕ ϕ= + + .  

To obtain the absolute velocity of the point B, we need to 
differentiate  the equation (21) along the arc coordinate s  [using 
the Frenet formula (16) taking into account that ρ = ρ (s) and φ = φ 
(s)], and multiply the result by the speed of motion Av  of the top of 
the trihedron: 

 
[ ]{

[ ]}
1 cos ( )sin

sin ( )cos .
B AV V k

n k

τ ρ ϕ ρ ϕ ϕ

ρ ϕ ρ ϕ ϕ

′ ′= + − + +

′ ′+ + +
 (22) 

The absolute velocity modulus of the point B for formulas (18) 
and (22) respectively, will be written as follows: 

 ( ) ( )2 21 ;B A n nV V k kτ τρ ρ ρ ρ′ ′= − + + +  (23) 

 ( ) ( ) 22cos sin .B AV V kρ ϕ ϕ ρ ϕ′ ′= + +  − +    (24) 

Now we turn to finding the absolute trajectory of point B, i.e. 
trajectory in the fixed coordinate system Oxy. The dependencies 

( )sτ τρ ρ= , ( )n n sρ ρ=  or ( )sρ ρ= , ( )sϕ ϕ=  specify the 
trajectory of motion in the system of the accompanying trihedron, 
i.e. a trajectory of relative motion. The sum of the relative and 
movable motions of point B will give the trajectory of its absolute 
motion. After all, we need to go from the vector equations (14) or 
(21) to their coordinate recording in the projection on the axis of the 
fixed coordinate system. Due to the motion of the trihedron, the 
position of its vertex ( , )A AA x y in the Oxy system will vary 
depending on the arc coordinate s . The coordinates of vertex A in 
the projections on the axis of the fixed system Oxy can be found if 
there is known the dependence ( )k k s=  – the so-called natural 
equation of the curve. The transition formulas have the form [7]: 

 cos ; sin ,A Ax ds y dsα α= =∫ ∫  (25) 

where ( )sα α=  – the regularity of the angle α change (Fig. 2) 
when the vertex A moves along the curve and which is also 
determined from the dependence ( )k k s=  [7]: 

 .kdsα = ∫  (26) 

The absolute trajectory of the point B in the coordinate system 
Oxy is obtained by parallel transfer of the vertex A along the axes 
on the  parameters (25) and by the simultaneous transition from the 
coordinates of the point B ( τρ , nρ  or cos , sinρ ϕ ρ ϕ ) in the 
trihedron system to the coordinates of the point ( , )B BB x y  in the 
fixed coordinate system. To do this, we combine their axes by 
turning the trihedron around the binormal by an angle ( )sα α= . 
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After the rotation, summation and substitution (26) in (25), the 
vector equation (14) is written in the projections on the axis of the 
fixed coordinate system: 

( ) ( ) ( )
( ) ( ) ( )

cos sin cos ;

sin cos sin .

B n

B n

x kds kds kds ds

y kds kds kds ds

τ

τ

ρ ρ

ρ ρ

= − +

= + +

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

 (27) 

Since the parametric equations (27) describe the absolute 
trajectory, their differentiation with respect to a parameter s can be 
used to find the components and the modulus of the absolute 
velocity of point B as a function of s : 

( ) ( )
( ) ( )

2 2 2 2

(1 )cos ( )sin ;

(1 )sin ( )cos ;

( ) (1 ) ( ) .

B n n

B n n

B B B n n

x k kds k kds

y k kds k kds

V s x y k k

τ τ

τ τ

τ τ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

′ ′ ′= − + − +

′ ′ ′= − + + +

′ ′ ′ ′= + = − + + +

∫ ∫
∫ ∫  (28) 

Comparing the last expression (28) and expression (23), we 
conclude that they are similar. For a complete analogy, the last 
expression (28) needs to be multiplied by the speed AV , since in 
this case we will move from the equation ( )B BV V s= to the equation 

( )B BV V t= . 
Applying a similar coordinate transformation with respect to 

the vector equation (21), we obtain the parametric equations of the 
absolute trajectory of the point B: 

 
( ) ( ) ( )
( ) ( ) ( )

cos cos sin sin cos ;

cos sin sin cos sin .

B

B

x kds kds kds ds

y kds kds kds ds

ρ ϕ ρ ϕ

ρ ϕ ρ ϕ

= − +

= + +

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

 (29) 

Equation (29) can be written in a more compact form by 
applying trigonometric formulas for the sum and difference of 
angles: 

 
( ) ( )
( ) ( )

cos cos ;

sin sin .

B

B

x kds kds ds

y kds kds ds

ρ ϕ

ρ ϕ

= + +

= + +

∫ ∫ ∫
∫ ∫ ∫

 (30) 

Analogously to the previous case, by differentiating (30) with 
respect to the parameter s , we can find the absolute velocity 
components of the point B  ( )B BV V s= , multiplying which by AV we 
obtain the result which was obtained earlier in (24). 

We consider the following examples. In view of the directing 
(initial) curve along which the accompanying trihedron moves with 
speed AV , we take a chain line whose natural equation has the form: 

 2 2 ,ak
a s

=
+

 (31) 

where а – constant parameter. 
The absolute velocity can be found from formulas (18) and 

(23) and an absolute trajectory according to equations (27) in the 
case when the relative motion in the trihedron is given by the 
dependences of ( )sτ τρ ρ= and ( )n n sρ ρ= . If these dependences 
have the form ( )sρ ρ= and ( )sϕ ϕ= , then we must use formulas 
(22), (24) and (30). We will use the second variant and consider the 
kinematics of the point B for some dependences ( )sρ ρ= and 

( )sϕ ϕ= . After substituting (21) into (30) and by integrating, we 
obtain: 

 
( )

( )

2 2

2 2

2 2

cos sin Arsh ;

sin cos .

B

B

sx a s a
aa s

y a s a s
a s

ρ ϕ ϕ

ρ ϕ ϕ

= − +
+

= + + +
+

 (32) 

By substituting the given dependences ( )sρ ρ=  and ( )sϕ ϕ=   
in (32), we obtain the parametric equations of the absolute 
trajectory of the point B. We find the absolute velocity in the 
projections onto the unit vectors of the accompanying trihedron 
from expression (22), and its modulus from expression (24). On 
Fig. 3 from the equations (32) there are constructed the absolute 
trajectories of the point B for different dependences of ( )sρ ρ=  
and ( )sϕ ϕ= . 

The value of the constant a is assumed to be a = 25, the change 
in the arc coordinate s occurred within the range s = 0 – 100. For ρ 
= 0, from equations (32) we obtain the initial curve – the chain line, 
which is on Fig. 3 depicted by thickened line. On Fig. 4 there are 
presented the graphs of the absolute velocity modulation of the 
point B, which are plotted as a function of the arc coordinate s, 
using formula (24) for V = 1 m·s-1 for the trajectories shown in Fig. 
3c and in Fig. 3d. 

 
a) 

 
b) 

 
c) 

 
d) 

    
e) 

 
f) 

Fig. 3. – Absolute trajectories of the point B for different dependences ( )sρ ρ= and ( )sϕ ϕ= , constructed from equations (32):  
а) ϕ = 90○ – const ; ρ = const (trajectories – equidistant curves); b) ϕ = 90○ – const ; ρ = cs – it changes linearly;  

c) ϕ = 0,5 s ; ρ = 10  – const; d) ϕ = s – 0,005 s2; ρ = 10 – const; e) ϕ = s – 0,005 s2; ρ = 0,25 s; f) ϕ = 0,5 s; ρ = 10 sin s 
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a) 

 
b) 

Fig. 4. – The graphs of the changes  of modulus of the absolute 
velocity of the point B in relation to the arc coordinate s for 

V = 1 m·s-1:  а) the graph of the changes of the velocity of the point 
for its absolute trajectory shown on Fig.3d;  b) the graph of the 

change in the velocity of a point for its absolute trajectory, 
shown in Fig. 3e  

 
Let us proceed to the next stage – finding the absolute 

acceleration of point B. According to the classical theory, it is 
defined as the geometric sum of the three vectors: 

 2B e r rw w w Vω= + + × .  (33) 
The first vector from (33) is called the transport acceleration 

and is determined by formula [4, 7]: 
 ( ),e Aw w ε ρ ω ω ρ= + × + × ×   (34) 

where ε  – vector of the angular acceleration. 
We find the expressions for all the components of expression 

(34) and their sum. The first vector Aw of acceleration of the origin 
of the trihedron it is found by differentiating the corresponding 
velocity, while moving from the time parameter t  to the arc 
coordinate s : 

 
( ) .

A A A
A A

A
A A A A

dV dV ds dVw V
dt ds dt ds

d dV dV V v V
ds ds ds

ττ τ

= = ⋅ = =

 
= = +  

 

 (35) 

The equation  (35) d
ds
τ  can be considered as first from the 

frenet formulas (16). Taking into account (16) the equation (35) can 
be written as follows: 

 2
A A A Aw V V V knτ′= + . (36) 

In the case when Av const=  the acceleration of the vertex of 
the trihedron will have one component directed along the principal 
normal n , and its modulus will have a value 2

AV k⋅ or 2 /AV r , since 
1 /k r= , where r  – is the radius of curvature of the curve. This is 

known as the so-called normal acceleration. If the speed of motion 
of the trihedron is variable, then another component appears, 
directed along the tangent – tangential acceleration. 

Thus, expression (36) is a well-known formula for determining 
the acceleration of a point's motion along a curve in which an arc 
coordinate s  serves instead of a time variable. The second 

component of the (34) includes the angular acceleration vector ε . 
To determine it, we differentiate the angular velocity vector ω . 
According to (2) we know the parameterω : AV kω = . Since the vector 

ε  is directed along the binormal b , the differentiation gives: 

 

( ) ( ) .

A

A A A A A

d d ds dV
dt ds dt ds
dV bV k v b V k b V k
ds

ω ω ωε = = = =

 ′ ′= = + 

 (37) 

In view of the Frenet formulas (16) and after further 
differentiation, we obtain: 
 ( ).A A Ab V V k V kε ′ ′= ⋅ ⋅ + ⋅  (38) 

Now we find a vector composition ε ρ× : 

 
0 0 ( )

( ) ( ).

A A A

n b

A n A A A A A

n b
V V k V k

V V k V k n V V k V k

τ

τ

τ
ε ρ

ρ ρ ρ

τ ρ ρ

′ ′ ′× = ⋅ + ⋅ =

′ ′ ′ ′= − ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ + ⋅

 (39) 

The last component in expression (34) - vector composition 
( )ω ω ρ× × we can find by analogous way. Below is the final result: 

 .n A Av k n v kτω ρ τ ρ ρ× = − ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅  (40) 

 2 2 2 2( ) .A A nV k n V kτω ω ρ τ ρ ρ× × = − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅  (41) 
Substituting the vectors (36), (39) and (41) into (34), after 

grouping of the components according to corresponding directions 
of the unit vectors, we obtain the vector of the transport 
acceleration: 

 
2

2

( )

( ) .

e A A n A A A

A A A A A n

w V V V k V k V k

nV V k V k V k V k

τ

τ

τ ρ ρ

ρ ρ

′ ′ ′ = − + − + 
′ ′ + + + − 

 (42) 

The next component in the formula (33) is called the relative 
acceleration, i.e. this is the acceleration of point B with respect to 
the system of the Frenet trihedron. It can be obtained by 
differentiating the expression for the relative velocity. The relative 
velocity rV  is obtained as the derivative of the radius vector ρ  in 
the system of the accompanying trihedron: 

 .r A
d d ds dV V
dt ds dt ds
ρ ρ ρ

= = ⋅ =  (43) 

After differentiating of the expression (43), we obtain: 

 ( ).r А А А А А
d d ds d dw V V V V V
dt ds dt ds ds

ρ ρ ρ ρ    ′ ′ ′′= = ⋅ = +   
   

 (44) 

Placing the vector (44) along the directions of the unit vectors 
of the trihedron, we obtain: 
 ( ) ( ) .r А А А А n А nw V V V n V Vτ ττ ρ ρ ρ ρ ′ ′ ′′ ′ ′ ′′= + + +    

Finally, the third, the last vector in the expression (33) is called 
the Coriolis acceleration. We find it as a doubled vector conjuction 
of the angular velocity vector Ab V kω = ⋅ ⋅  and relative velocity 
vector rV  (43). We will have: 

 22 0 0 2 ( ).
0

r A A n

A A n

n b
V V k V k n

V V
τ

τ

τ
ω τρ ρ

ρ ρ
′ ′× = = − +

′ ′
 (46) 

Substituting (42), (45) and (46) into (33) and grouping the 
components of the vectors along the directions of the unit vectors of 
the trihedron, we finally obtain the expression for absolute 
acceleration of point B:  

 
2

2

(1 ) ( 2 )

( ) ( 2 ) .

B А А n А n n

А А n А n n

w V V k V k k k

nV V k V k k k k

τ τ τ

τ τ τ

τ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

 ′ ′ ′′ ′ ′= − + + − − − +  
 ′ ′ ′′ ′ ′+ + + − − + + 

 (47) 

By formula (47), we can find the absolute acceleration of point 
B in complex motion if there known the law of its motion in the 
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contiguous plane of the trihedron ρτ = ρτ (s), ρn = ρn (s), and the 
trihedron itself moves with a given velocity v = v(s) along a plane 
curve with the known natural equation k = k (s). It should be 
emphasized that the absolute acceleration is obtained in the 
projections on the axis of the mobile accompanying trihedron of the 
curve. 

Now we find the formula for the absolute acceleration of point 
B when its motion is given by equation (21), that is: 
 cos ; sin .nτρ ρ ϕ ρ ρ ϕ= =  (48) 

Differentiating twice the equations (48), we obtain: 

 ( ) ( )
( ) ( )

2

2

cos sin ;
sin cos ;

cos 2 sin ;

sin 2 cos .

n

n

τ

τ

ρ ρ ϕ ρϕ ϕ
ρ ρ ϕ ρϕ ϕ

ρ ρ ρϕ ϕ ρ ϕ ρϕ ϕ

ρ ρ ρϕ ϕ ρ ϕ ρϕ ϕ

′ ′ ′= −
′ ′ ′= +

′′ ′′ ′ ′ ′ ′′= − − +

′′ ′′ ′ ′ ′ ′′= − + +

 (49) 

Substituting (49) in (47) we obtain an expression for finding 
the absolute acceleration of point B in the case when its relative 
motion is specified by the distance ( )sρ ρ=  and angle ( )sϕ ϕ= : 

 

[ ]{

[ ] }
[ ]{

[ ] }

2

2

1 cos ( )sin

( ) cos

2 ( ) sin

sin ( )cos

( ) sin

2 ( ) cos .

B А А

А

А А

А

w V V k

V k

k k

nV V k

V k

k k k

τ ρ ϕ ρ ϕ ϕ

ρ ρ ϕ ϕ

ρ ϕ ρ ρϕ ϕ

ρ ϕ ρ ϕ ϕ

ρ ρ ϕ ϕ

ρ ϕ ρ ρϕ ϕ

′ ′ ′= + − + +

′′ ′ + − + − 
′ ′ ′ ′′− + + + +

′ ′ ′+ + + +

′′ ′ + − + + 
′ ′ ′ ′′+ + + + +

 (50) 

The modulus of the absolute acceleration vector of the point B 
(47), which is given by the projections onto the orthograms of the 
trihedron, or (50), where the point B is given by the distance ρ and 
the angle φ, is defined as the geometric sum of its projections on the 
unit vectors τ  и n : 

 2 2 .B B Bnw w wτ= +  (51) 
Formulas (47), (50) for finding of the absolute acceleration are 

obtained by methods of the classical theory with finding each 
component: transport acceleration, relative acceleration and 
acceleration of Coriolis. 

And now we show how simply can be obtained theses 
formulas with the help of Frenet formulas, without dwelling on 
finding each individual component of absolute acceleration. This is 
the purpose of this study. 

The determination of the vecor of an absolutte acceleration of 
the point B is carried out by differentiating the expressions (18) or 
(22) of the absolute velocity, since this is done in the study of 
ordinary motion. Anyway, it must be differentiated along the arc 
coordinate s , since the expressions (18), (22) are its functions. We 
differentiate, for example, expressions (18) in detail using the 
Frenet formulas (16): 

 

(1 ) ( )

(1 ) ( )

(1 ) ( )

(1 ) (1 )

( ) ( )

(1 ) ( )

(1

B A n n

A n n

A n n

A n n

n n

A n n

A

V V k n k

V k n k

V k n k

V k k

n k n k

V k n k

V nk

τ τ

τ τ

τ τ

τ τ

τ τ

τ τ

τ ρ ρ ρ ρ

τ ρ ρ ρ ρ

τ ρ ρ ρ ρ

τ ρ ρ τ ρ ρ

ρ ρ ρ ρ

τ ρ ρ ρ ρ

 ′ ′ ′ ′= − + + + + 
′ ′ ′+ − + + + = 

 ′ ′ ′= − + + + + 
′ ′ ′ ′+ − + + − + +

′ ′ ′ ′+ + + + =
 ′ ′ ′= − + + + 

+ − ) ( )

( ) ( ) .

n n n

n n

k k k

k k n k k

τ τ

τ τ τ

ρ ρ τ ρ ρ ρ

τ ρ ρ ρ ρ ρ

 ′ ′ ′ ′′+ + − − + −
′ ′ ′ ′′− + + + + 

 (52) 

Grouping in the expression (52) the components along the 
directions of the unit vectors τ  and n , we obtain: 

2

2

(1 ) ( 2 )

( ) ( 2 ) .

B A n A n n

A n A n n

V V k V k k k

n V k V k k k k

τ τ τ

τ τ τ

τ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

′ ′ ′ ′′ ′ ′ = − + + − − − + 
′ ′ ′′ ′ ′ + + + + − + + 

  

Comparing the expressions (47) and (53), we see that they 
differ only by multiplier AV . This is understandable, since we have 
differentiated the expression (18) along the arc coordinate s . When 
differentiating with respect to time t , as it is necessary to do in 
order to find the acceleration, we obtain 

 ,B B B
B A

dV dV ds dVw V
dt ds dt ds

= = =  (54) 

i.e. from (54) it is clear that the result (53) obtained must be 
multiplied by the velocity AV . After this, expression (53) will be 
analogous to expression (47). In the same way, by differentiating 
expressions (22) one can obtain an expression (50). 

So, it was shown how simply is to find the absolute 
acceleration vector of point B in complex motion with the 
application of the accompanying trihedron of the portable trajectory 
and the Frenet formulas. The obtained result can be formulated in 
the form of the following rule: 

If the material point in the system of the mobile accompanying 
trihedron of the curve is given by the radius vector in the form (14), 
in order to find its absolute acceleration in the projections onto the 
units of the same trihedron, it is necessary to differentiate the 
expression of the absolute velocity (18) along the arc coordinate s 
using the Frenet formulas and the obtained result to multiply by the 
velocity of the vertex of the trihedron along the curve. 

The formulated rule also applies to formula (21), when the 
material point in the contiguous plane of the trihedron is described 
as a polar coordinate system, i.e. it is necessary to differentiate 
expression (22) and obtained result to multiply by the velocity of 
the vertex of the trihedron along the curve. 

Let us consider an example that explains the dynamics of the 
motion of a material point in a complex motion. 

A tractor trailer that contains a flat cargo moves at a constant 
speed AV  along a curve, which is a chain line given by the natural 
equation (31). At a certain point of time, as the curvature of the 
curve increases, it comes into motion relative to the trailer. To find 
the relative and absolute trajectories of cargo movement, as well as 
its speed, if the location of the cargo in the trailer at the beginning 
of the slip and the coefficient of friction f are known. 

Neglecting the size of the cargo, we take it for the material 
point, which is in the front left corner of the trailer along the tractor 
movement. This angle is taken as the vertex of the trihedron, which 
is rigidly tied to the trailer, and the ort τ  is directed along the 
tangent to the chain line along which the indicated point of the 
trailer moves, and the unit vector n  – to the center of curvature of 
the curve. The parametric equations of the chain line after the 
transition from the natural equation to the parametric equations 
according to (25), (26) take the following form: 

 2 2Arsh ; .sx a y a s
a

= = +  (55) 

This curve has an axis of symmetry that passes through the 
vertex (at s = 0), in which the curvature is the largest and takes the 
value k = 1 / a. When the trihedron moves along a curve with a 
constant velocity in the direction of the vertex, the curvature of the 
chain line will increase, like the centrifugal force. In this case, the 
moment may come when the frictional force will be overcome and 
the relative movement of the load in the trihedron (or trailer) system 
will begin. 

To compose the equation of motion in the form Bmw F= , we 
must find the expression for the absolute acceleration of the particle 
B. We obtain it from (47) for 0AV ′ = . Since the applied friction 
force F = f mg  acts in the direction opposite to the relative velocity, 
it is necessary to find the projections of the unit tangent vector to 
the relative trajectory. Its projection on the unit vectors τ and will 

n  have the same ratio, which is the components of the relative 
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velocity τρ′  и nρ′  т.е.: 

 
2 2

n

τ

τ

ρ

ρ ρ

′

′ ′+
    and.    

2 2
n

nτ

ρ

ρ ρ

′

′ ′+
 (56) 

Let us write down the vector equation Bmw F=  in the 
projections onto the unit vectors of the trihedron, taking (50) and 
(56) into account, and also that  V = const. After reducing to the 
mass m particles, we obtain a system of two differential equations in 
the form: 

2 2

2 2

2 2

2 2

( 2 ) ;

( 2 ) ,

A n n

n

n
A n n

n

V k k k fg

V k k k k fg

τ
τ τ

τ

τ τ

τ

ρρ ρ ρ ρ
ρ ρ

ρρ ρ ρ ρ
ρ ρ

′
′′ ′ ′− − − = − ⋅

′ ′+

′
′′ ′ ′+ + − + = − ⋅

′ ′+

 (57) 

where 2 2

ak
a s

=
+

; 
( )22 2

2ask
a s

′ = −
+

. 

A graphical presentation of the results of numerical integration 
of the system (57) is shown in Fig. 5. Integration was carried out by 
changing the arc coordinate s from  –80º to +80º. The value of the 
constants is: a = 25; f = 0.35; V  = 10 m·s-1.  

From Fig. 5a, it is seen that the relative movement of the load 
began at approximately s ≈ –10º and it is ended at s ≈ 25º, with the 
maximum relative velocity reaching Vr ≈ 0.8 m·s-1. 

 

The value of the arc coordinate s, at which the relative motion 
began, can also be determined analytically. Relative motion will 
begin when the centrifugal force at the vertex of the trihedron (i.e., 
with ρτ = ρn = 0) exceeds the frictional force Fт = f mg. Equating 
these forces and substituting the expression k = k(s), we obtain an 
equation with an unknown value of the arc coordinate s of the form: 

 
2

2 2
Am V a f mg

a s
=

+
,  

from where 

 ( )2 .A
as V afg
fg

= −  (58) 

The solution of equation (58) for conditions of the indicated 
constants shows that the relative movement of the load begins at s > 
–10.15°. Having passed the way to the symmetrical point at s = 
10.15º, the cargo continues to move along the body, but with a 
slowdown, since the values of the centrifugal force are not 
sufficient to continue this movement. 

The graph of the relative motion trajectory (Figure 5, b) shows 
that the load in the trailer will move approximately 1.5 ° towards 
the opposite side and approximately 0.2 ° in the direction opposite 
to the tractor's direction of travel. 

   
a) 

 
b) 

  
c) 

 
d) 

 
Fig. 5. Graphs of dependencies obtained as a result of integration of the system (57): 

a) graph of the change of relative speed; b) the trajectory of relative motion in the trihedron system;  
c) a chain line and absolute trajectories of motion (additionally shown for f = 0.3 and f = 0.25); d) graph of absolute speed changes 

 
 
The graphs of the absolute trajectory (Figure 5, c) show that 

for different coefficients of friction the relative movement of cargo 
in the trailer starts from different points of the chain line. After the 
discontinuance of the relative movement, the absolute path of the 
load obtains the form of a curve parallel to the chain line. 

From the graph of the change in absolute velocity (Figure 5, d) 
it can be seen that after the discontinuance of a relative movement, 
the absolute speed of the load will be greater than it was before it, 
since it occupies another position in the trihedron system. 

There are possible also other examples of similar processes. 

4. Conclusions 
The application of the accompanying trihedron of a plane 

curve as a moving coordinate system relative to which a relative 
motion of the point is carried out is quite possible when 
investigating the complex motion of a material point along the 
plane. The Frenet formulas make it possible to quickly and easily 
find the absolute velocity of a material point in its complex motion 
in the projections onto the orthograms of the trihedron and to find 
the absolute trajectory in a fixed coordinate system. 

In this case, it is much easier to find the absolute acceleration 
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of a point in a complex motion in the projections onto the 
orthogonal faces of the trihedron, which automatically includes all 
three of its components. This allows us to solve, on a new scale, the 
problems of the dynamics of a material point in the moving system 
of the Frenet trihedron. A method which is developed considerably 
simplifies the solution of problems of complex motion of a material 
point, which determines its further development and effective 
application. 
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