УЛЬТРАЗВУКОВОЙ ЭКПРЕСС- МЕТОД ОЦЕНКИ ГЛИЦЕРИНА В БИОДИЗЕЛЕ

Д.П. Журавель, к.т.н., доцент, **Р.В. Кушлык**, к.т.н., доцент, Таврический государственный агротехнологический университет (г. Мелитополь)

ВВЕДЕНИЕ. Проблеме осваивания альтернативных возобновляемых источников энергии уже давно уделяют внимание все высокоразвитые страны мира. Такая необходимость диктуется как исчерпанием не возобновляемых энергетических ресурсов, так и большим количеством экологических проблем, которые возникают, прежде всего, за счет использования традиционных энергетических источников. При сохранении нынешних темпов добычи и использования полезных ископаемых, их хватит на 30-40 лет.

В странах Европы широкое применение нашли два вида биотоплива: биоэтанол (для бензиновых двигателей) и биодизель – метиловые эфиры жирных кислот (для дизельных двигателей)[1].

Одним из основных недостатков биодизеля есть наличие глицерина, количество которого должно быть не более 0,3%. При производстве биодизеля в зависимости от технологии, а также без специальных очистительных устройств в нем находится намного больше глицерина, который в процессе сгорания топлива в ДВЗ образует нагар и сажу. Поэтому фильтры и моторное масло необходимо заменять чаще обычного. Контроль такого показателя, как глицерин в биодизеле является актуальной проблемой.

Учитывая тот фактор, что глицерин в биодизеле имеет существенное значение при контроле качества выпущенной продукции, то целью данной работы является разработка акустического экспресс-метода контроля глицерина на завершающей стадии производства биодизеля и разработка на его основе установки.

ОБЪЕКТ И МЕТОДИКА. Акустический метод является одним из эффективных экспериментальных методов исследования кинетических свойств жидкостей. При распространении звуковой волны изменяются давление и температура в среде, которая возмущает его динамическое равновесие. Процесс установления равновесия сопровождается диссипацией энергии волны, то есть поглощением звука. Таким образом, зависимость коэффициента поглощения звука от параметров состояния и частоты несет информацию о характерных для данного объекта релаксационных процессах и их молекулярных механизмах[2].

Нами разработана акустическая установка, которая позволяет проводить измерение скорости и коэффициента поглощения ультразвука в биодизеле при нормальном давлении в интервале температур 20-90⁰С и интервале ультразвуковых частот 800-5000 Кгц.[3]. Структурная схема установки и эпюры сигналов, представленные на рис.1.

Установка состоит из двух генераторов импульсов ГІ1 и ГІ2 (Г5-56 и Г5-54), измерителя интервалов времени ВІЧ (Ч3-34), осциллографа О (С1-96), водяного термостата Т (UH-8), импульсного вольтметра В (В7-30), контролера времени КЧ (SH2000/1), ЕВМ и измерительной камеры ВК.

На рис. 3 представлена схема измерительной камеры, общий вид которой представлен на рис. 4. Корпуса камер изготовлены из бронзы и состоят из двух стыковых симметричных частей 6 и 7, которые предназначенные для измерения скорости и коэффициента поглощения ультразвука на разных фиксированных расстояниях. В торцах камеры установлены излучающий 4 и приемный 10 электроакустические преобразователи ЦТС 19, которые работают в измерительных камерах на УЗ частотах 1, 3 и 5 Мгц, соответственно. В измерительной камере электроакустические преобразователи акреплены фторопластовыми прокладками 11 и гайками 8. Преобразователи через латунные вставки 9 соединенные с электронной системой с помощью высокочастотных

кабелей, которые проходят через каналы 3. Полости, в которых находятся преобразователи, герметизированы фторопластовыми прокладками 2 и гайками 1. Опытный образец биодизеля заливается через отверстие 5.

Рис.1- Блок-схема и эпюры сигналов экспериментальной установки

Общий вид экспериментальной установки представлен на рис. 2.

Рис.2 - Общий вид экспериментальной установки

Рис. 3 – Схема измерительной камеры

Рабочий объем камеры 12 составляет 70 и 140 мл, акустическая база L собранной камеры составляет 102 и 205 мм соответственно. Камера с опытным образцом размещалась в водяном термостате UH-8 и термостатировалась из точностью до 0,05 ⁰C.

При измерении скорости ультразвука генератор импульсов ГІ1 производит синхроимпульсы И (рис. 1), которым запускается развертка осциллографа О. Этим же генератором через измеритель интервалов времени ВІЧ создается ударное возбуждение пьезоприёмника, который смонтирован в измерительной камере ВК.

Рис.4 – Общий вид измерительных камер

Пьезоприёмник излучает ультразвуковые импульсы в опытную среду, которые принимаются другим пьезоприёмником. Сигнал 4 из выхода пьезоприёмников с задержкой времени τ относительно зондирующего сигнала 2 поступает на один из входов осциллографа О. Час прохождение ультразвука в акустической камере определяется измерителем интервала времени ВІЧ и через контролер КЧ вводится в ЕВМ. На второй вход осциллографа О от второго генератора импульсов ГІ2 поступает сигнал-метка с регулируемой задержкой времени. Время τ относительно зондирующего сигнала измеряется измерителем интервалов времени ВІЧ, которое срабатывает по некоторым уровням напряжения U_1 и U_2 . Этими уровнями можно определить амплитуду излучающего и принятого сигналов.

Изменяя с помощью генератора импульсов ГІ2 величину задержки сигнальной метки, смещают ее фронт с вершиной принятого акустического сигнала. За счет этого показатели интервала времени ВІЧ увеличиваются на величину τ_n .

Для измерения скорости и коэффициента поглощения ультразвука использован известный импульсный метод "прямого отчисления", по времени прохождения ультразвукового импульса в опытной среде, который отличается от других методов высокой точностью, простотой реализации в условиях нормального и высокого давления в автоматическом режиме измерения.

Согласно классическим представлениям о распространении ультразвука в жидкостях, поглощение обусловливается потерями акустической энергии, которое визвано вязкостью и теплопроводностью жидкости. Коэффициент поглощения ультразвука а при этом определялся выражением [2]:

$$\alpha = (\alpha_{\eta} + \alpha_{\kappa}) \cdot f^{2} = \frac{2\pi^{2}}{\rho c^{3}} \left[\frac{4}{3} \eta + K \left(\frac{1}{C_{\nu}} - \frac{1}{C_{p}} \right) \right] f^{2}, \qquad (1)$$

де α_{η} і α_{κ} – коэффициенты, которые определяются вязкостью и теплопроводимостью жидкости; ρ – плотность жидкости; с – скорость ультразвука; η – коэффициент вязкости сдвига; К – коеэффициент теплопроводности; С_v і С_p – коэффициенты удельной теплоемкости; *f* - частота ультразвуковых колебаний.

Скорость ультразвука при нормальном давлении в описанной камере определялась по формуле [2].

$$C = \frac{L}{\tau - 0.9M\kappa c} = \frac{L}{\tau - \tau_3}$$
(2)

где *L* – акустическая база камеры, м;

т – время прохождения ультразвука через опытный образец;

τ₃- время прохождения ультразвуку через стенки камеры.

Относительная ошибка определения скорости и коэффициента поглощения ультразвука составила, соответственно, 0,05% и 3,5%.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ. На рис. 5 представлены зависимости коэффициента поглощения ультразвука α от времени τ с разной концентрацией глицерина в биодизеле при температуре 20⁰ С.

В течении времени значение *а* уменьшается к некоторому установленному показателю, что объясняется выделением воздушных пузырьков, которые образовались при перемешивании, а это в свою очередь существенно влияет на величину коэффициента поглощения, при чем, чем больше в пробе находится глицерина, тем больше необходимо времени, к началу отчисления коэффициента поглощения.

При температурах 40 и 60 ⁰С характер кривых аналогичен, однако время проведения опыта с увеличением температуры уменьшается.

На рис. 6 представлены зависимости установленного значения коэффициента поглощения ультразвука α от наличия глицерина в биодизеле при температурах образцов 20,40 и 60 0 C.

Рис. 5 - Зависимость коэффициенту поглощения ультразвука α от времени τ при разной концентрации глицерина в биодизеле

Рис. 6 - Зависимость коэффициента поглощения ультразвука от концентрации глицерина в биодизеле при температурах образцов 20, 40, 60 ⁰C[.]

На рис.6 представлены зависимости установленного значения коэффициента поглощения ультразвука α от наличия глицерина в биодизеле при температурах образцов 20,40 и 60 ⁰C. Наблюдается увеличение установленного значения с ростом глицерина в интервале концентраций 0...2,0 масс.%. С увеличением температуры образцов коэффициент поглощения уменьшается.

Скорость ультразвука *С* с малой концентрацией глицерина в биодизеле была менее чувствительным параметром. При разной концентрации глицерина в течение времени данный показатель практически оставался постоянным значением, а если и менялся то в незначительных пределах.

ВЫВОДЫ: В результате экспериментальных исследований установлено, что при определенной концентрации глицерина в опытном образце коэффициент поглощения ультразвука уменьшается к некоторому значению, причем, с увеличением концентрации глицерина в опытных образцах время от начала отчисления коэффициента поглощения увеличивается, это даёт предпосылки о правомощности применения данного експрес – метода для оценки качественных показателей биодизеля.

Литература

- 1. Дидур В.А., Надыкто В.Т.,. Журавель Д.П. Особенности эксплуатации мобильной сельскохозяйственной техники при использовании биодизельного топлива / Тракторы и сельхозмашины. Москва, 2009 №3.
- 2. Бергман Л. Ультразвук и его применение в науке и технике. М.: 1956 726 с.
- 3. *Кушлык Р.В., Микитенко О.В.* Экспериментальная установка для контроля загрязнения моторного масла акустическим методом. / Труды Таврического государственного агротехнологического университета. Вип.8, Том1.-Мели-тополь, ТДАТУ, 2008 г.