УДК 621.225.001.4

НАЧАЛЬНЫЕ УСЛОВИЯ МОДЕЛИРОВАНИЯ РАБОТЫ ГИДРАВЛИЧЕСКОГО ВРАЩАТЕЛЯ ПЛАНЕТАРНОГО ТИПА

Волошина А. А., д.т.н.

Таврический государственный агротехнологический университет Тел. (0619) 42-04-42

Аннотация – работа посвящена обоснованию начальных условий моделирования работы вытеснительной и распределительной систем гидравлического вращателя планетарного типа для определения влияния геометрических параметров элементов вытеснительной и распределительной систем на выходные характеристики гидровращателя планетарного типа.

Ключевые слова– гидравлический вращатель планетарного типа, вытеснительная система, распределительная система, моделирование, начальные условия, зазор, рабочая камера.

Постановка проблемы. Повышение эффективности эксплуатации мобильной техники в настоящее время определяется степенью гидрофикации ее активных рабочих органов, а также рациональным выбором режимов работы элементов гидравлической системы и номенклатурой гидроагрегатов. Поэтому большого внимания заслуживают вопросы исследования рабочих процессов, возникающих в гидравлических агрегатах и их элементах – гидровращателях планетарного типа).

Основным недостатком гидровращателя планетарного типа [1-8] является неравномерность выходных характеристик, обусловленная несовершенством конструкции формы элементов вытеснительной системы, а также наличием больших гидравлических потерь в распределительной системе, обусловленных геометрией проточных частей.

На сегодняшний день практически отсутствуют исследования взаимосвязи геометрических параметров вытеснительной и распределительной систем и выходных характеристик гидровращателя планетарного типа. Поэтому остро встает вопрос исследования влияния геометрических параметров вытеснительных и распределительных систем гидровращателей планетарного типа на их выходные характеристики.

Анализ последних исследований. Анализ выполненных исследований показывает, что математические модели, применяемые в пре-

[©]Волошина А. А.

дыдущих исследованиях [9-11], недостаточно корректно отражали рабочие процессы гидравлических вращателей планетарного типа, не в полной мере описывали работу и взаимосвязи всех элементов вытеснительной и распределительной систем гидровращателей. Принятый ряд допущений хоть и упрощал производимые вычисления, но и ухудшал точность показателей, полученных при использовании известных математических моделей применительно к гидравлическим вращателям планетарного типа. Выполненные исследования проводились без учета ряда важных факторов, определяющих работу системы непосредственного распределения рабочей жидкости, что не позволяет разработать математическую модель, соответствующую реальному планетарному гидравлическому вращателю, и как следствие, эффективно использовать современные математические методы проектирования и расчета.

К числу таких факторов можно отнести: заполнение рабочих камер гидравлического вращателя планетарного типа, образованных элементами его вытеснительной системы рабочей жидкостью, при формировании вращающегося гидравлического поля; математическое описание потерь при течении рабочей жидкости в проточных частях распределительной системы планетарного гидровращателя, при определении его геометрических параметров и выходных характеристик; повышение точности расчета гидравлических, механических и объемных потерь в планетарном гидровращателе; определение геометрических параметров элементов распределительной системы непосредственного типа для планетарных гидравлических вращателей; расчёт геометрических параметров элементов вытеснительной системы, определяющих формирование вращающегося гидравлического поля для гидравлических вращателей планетарного типа.

В этой связи, проведение параметрических исследований гидравлического вращателя планетарного типа, которые позволят установить влияние геометрических параметров вытеснительной и распределительной систем на изменение его выходных характеристик, является актуальной задачей, для выполнения которой необходимо разработать начальные условия моделирования работы вытеснительной и распределительной систем гидровращателя планетарного типа.

Формулирование целей статьи (постановка задания). Обоснование начальных условий моделирования работы вытеснительной и распределительной систем гидравлического вращателя планетарного типа для проведения параметрических исследований гидравлического вращателя планетарного типа, которые позволят установить влияние геометрических параметров вытеснительной и распределительной системы на его выходные характеристики.

Основная часть. В гидравлических вращателях планетарного

типа с использованием непосредственной системы распределения рабочей жидкости, большое значение уделяется геометрическим параметрам элементов вытеснительной системы, так как часть рабочей жидкости распределяется к рабочим камерам гидровращателя через зазоры, образовавшиеся между элементами вытеснительной системы в результате аппроксимации циклоидального зубчатого профиля самих вытеснителей.

Для исследования изменения зазора между вытеснительными элементами, соединяющего рабочие камеры, разработана математическая модель [12], описывающая взаимосвязь геометрических и функциональных параметров вытеснительной системы гидравлических вращателей планетарного типа, которую можно реализовать с помощью пакета имитационного моделирования VisSIM, позволяющего моделировать изменение зазора между зубьями элементов вытеснительной системы в зависимости от конструктивных особенностей ее элементов и определить его влияние на выходные характеристики планетарного гидровращателя.

Для моделирования работы вытеснительной системы принимаем следующие исходные данные и начальные условия, которые заданы блоком 1 (рис. 1):

– рабочий объем серийного и модернизированного гидровращателей $V_{26} = 6300 \, c M^3$;

– количество зубьев направляющей $Z_{\text{напр}(c)} = 26$ серийного и $Z_{\text{напр}(M)} = 14$ модернизированного гидровращателей;

– количество зубьев шестерни $Z_{u(c)} = 25$ серийного и $Z_{u(M)} = 13$ модернизированного гидровращателей;

– радиус окружности расположения центров зубьев $R_{u(c)} = 80,0766 \, MM$ шестерни серийного и $R_{u(M)} = 73,6473 \, MM$ модерни-зированного гидровращателей;

– радиус зубьев шестерни $r_{u(c)} = 6_{MM}$ серийного и $r_{u(M)} = 9_{MM}$ модернизированного гидровращателей;

– радиус зубьев направляющей $r_{_{H(c)}} = 6_{MM}$ серийного и $r_{_{H(M)}} = 11,8_{MM}$ модернизированного гидровращателей;

– эксцентриситет $e_c = 3,0266 \, \text{мм}$ серийного и $e_{\text{м}} = 5,9473 \, \text{мм}$ модернизированного гидровращателей.

Для исследования влияния изменения геометрических параметров распределительной системы гидровращателя планетарного типа на его выходные характеристики разработана математическая модель [12], описывающая взаимосвязь геометрических и функциональных параметров распределительной системы, которую можно реализовать

с помощью пакета имитационного моделирования VisSIM, позволяющего моделировать изменение геометрических параметров распределительной системы в любой момент времени в зависимости от конструктивных особенностей ее элементов и определить их влияние на выходные характеристики планетарного гидровращателя.

моделирования работы вытеснительной и распределительной систем гидравлического вращателя планетарного типа

Для моделирования работы распределительной системы принимаем следующие исходные данные и начальные условия, которые заданы блоком 1 (рис. 1):

– количество окон нагнетания крышки $Z_{\mu(c)} = 26$ серийного и $Z_{\mu(m)} = 14$ модернизированного гидровращателей;

– количество окон слива крышки $Z_{\mu(c)} = 26$ серийного и $Z_{\mu(M)} = 14$ модернизированного гидровращателей;

– количество распределительных окон шестерни $Z_{u(c)} = 25$ серийного и $Z_{u(m)} = 13$ модернизированного гидровращателей;

– радиус окружности расположения распределительных окон шестерни $\mathbf{R}_{u(c)}^{0} = 72, 2 \, \text{мм}$ серийного и $\mathbf{R}_{u(m)}^{0} = 66, 4 \, \text{мм}$ модернизированного гидровращателей;

– радиус распределительных окон шестерни $r_{u(c)} = 2,5 \, MM$ серийного и $r_{u(M)} = 4,4 \, MM$ модернизированного гидровращателей;

– радиус окон нагнетания и слива крышки $r_{\kappa p(c)} = 2,5_{MM}$ се-

рийного и $r_{\kappa p(M)} = 4, 4_{MM}$ модернизированного гидровращателей;

– эксцентриситет $e_c = 3 \, MM$ серийного и $e_M = 6 \, MM$ модернизированного гидровращателей.

Блок 2 (рис. 2) позволяет определить угловое расположение зубьев шестерни и направляющей серийного и модернизированного гидравлических вращателей планетарного типа, согласно выражениям [12]:

$$\gamma_{u_i} = \gamma_{1u} + \frac{2\pi}{Z_u} (i-1);$$

$$\gamma_{u_i} = \frac{2\pi}{Z_{uanp}} (j-1);$$
(1)

где **Z**_{*ш*} – количество зубьев шестерни;

i – номер текущего зуба шестерни;

Z_{напр} – количество зубьев направляющей;

j – номер текущего зуба направляющей.

Блок 3 (рис. 3) позволяет определить радиусы расположения центров зубьев направляющей серийного и модернизированного гидравлических вращателей планетарного типа согласно выражению[12]:

$$\boldsymbol{R}_{\mu} = \sqrt{\left(\boldsymbol{r}_{\mu} + \boldsymbol{r}_{\mu}\right)^{2} - \left(\boldsymbol{R}_{\mu} \cdot \sin \frac{\boldsymbol{\pi}}{\boldsymbol{Z}_{\mu}}\right)^{2} + \boldsymbol{R}_{\mu} \cdot \cos \frac{\boldsymbol{\pi}}{\boldsymbol{Z}_{\mu}} + \boldsymbol{e}}, \qquad (2)$$

где *г*_ш – радиус зубьев шестерни;

 r_{μ} – радиус зубьев направляющей;

 R_{uu} – радиус окружности расположения центров зубьев шестерни; e – эксцентриситет.

Блок 4 (рис. 4) позволяет определить зазоры между зубьями шестерни и направляющей серийного и модернизированного гидровращателей, согласно выражениям [14]:

$$\boldsymbol{\delta}_{i} = \boldsymbol{M}_{i} - (\boldsymbol{r}_{\mu} + \boldsymbol{r}_{\mu}), \qquad (3)$$

где M_i – межцентровое расстояние между центром зуба направляющей и центром зуба шестерни, зависящее от четверти, в которой расположены зубья направляющей и шестерни [12,13], которое в зависимости от четверти расположения зубьев определяется выражением:

Рис. 2. Блок определения углов расположения центров зубьев шестерни и направляющей серийного и модернизированного

Рис. 3. Блок определения радиусов расположения центров зубьев направляющей серийного и модернизированного гидровращателей

Причем зазоры δ_{1c} , δ_{3c} , δ_{5c} , δ_{7c} , δ_{9c} , δ_{11c} , δ_{13c} , δ_{15c} , δ_{17c} , δ_{19c} , δ_{21c} , δ_{23c} , δ_{25c} между зубьями шестерни и направляющей серийного гидровращателя являются проверочными, а зазоры δ_{2c} , δ_{4c} , δ_{6c} , δ_{8c} , δ_{10c} , δ_{12c} , δ_{14c} , δ_{16c} , δ_{18c} , δ_{20c} , δ_{22c} , δ_{24c} , δ_{26c} – рабочими зазорами; зазоры δ_{1m} , δ_{3m} , δ_{5m} , δ_{7m} , δ_{9m} , δ_{11m} , δ_{13m} между зубьями шестерни и направляющей модернизированного гидровращателя являются проверочными, а δ_{2m} , δ_{4m} , δ_{6m} , δ_{8m} , δ_{10m} , δ_{12m} , δ_{14m} – рабочими зазорами.

Блок 5 (рис. 5) позволяет определить радиусы расположения центров окон нагнетания и слива крышки серийного и модернизированного гидравлических вращателей планетарного типа, согласно выражению [12]:

$$\boldsymbol{R}_{\kappa p} = \sqrt{\boldsymbol{R}_{\boldsymbol{u}}^{0\,2} - 2\boldsymbol{R}_{\boldsymbol{u}}^{0} \cdot \cos(\boldsymbol{\pi} - \boldsymbol{\alpha}_{i}) \cdot \boldsymbol{e} + \boldsymbol{e}^{2}}, \qquad (5)$$

где
$$R_{\mu}^{0}$$
 - радиус расположения окон распределительной системы;

 α_i - текущий угол расположения окон распределительной системы;

е- эксцентриситет.

Рис. 4. Блок определения зазоров между зубьями шестерни и направляющей серийного и модернизированного гидровращателей

Блок 6 (рис. 6) позволяет определить угловое расположение распределительных окон шестерни, а также окон нагнетания и слива крышки серийного и модернизированного гидравлических вращателей планетарного типа, согласно выражениям [12]:

$$\alpha_{i} = \frac{2\pi}{Z_{p}} (i-1);$$

$$\beta_{n_{i}} = \beta_{1} + \frac{2\pi}{Z_{n}} \cdot (i-1);$$

$$\beta_{cn_{i}} = \frac{2\pi}{Z_{cn}} \cdot (i-1) - \beta_{1};$$
(6)

где *i* – номер текущего окна распределительного устройства (шестерни).

Блок 8 (рис. 8) позволяет определить площадь проходного сечения непосредственной распределительной системы серийного и модернизированного гидравлических вращателей планетарного типа, согласно выражениям [12]:

$$S_{i} = \frac{r_{p}^{2}}{2} (\varphi_{1i} - \sin \varphi_{1i}) + \frac{r_{\kappa p}^{2}}{2} (\varphi_{2i} - \sin \varphi_{2i}), \qquad (7)$$

а площадь проходного сечения равна $S_{n.c_i} = \sum S_i$.

окон шестерни и крышки серийного и модернизированного гидровращателей

$$\boldsymbol{\varphi}_{1i} = 2 \arccos\left(\frac{\boldsymbol{M}_{i}^{2} + \boldsymbol{r}_{p}^{2} - \boldsymbol{r}_{\kappa p}^{2}}{2\boldsymbol{M}_{i} \cdot \boldsymbol{r}_{p}}\right), \qquad (8)$$

$$\boldsymbol{\varphi}_{2i} = 2 \arcsin\left(\frac{\boldsymbol{r}_p}{\boldsymbol{r}_{\kappa p}} \cdot \sin\frac{\boldsymbol{\varphi}_{1i}}{2}\right),$$
(9)

Блок 8 (рис. 8) позволяет определить межцентровое расстояние между распределительными окнами шестерни и окнами нагнетания крышки в зависимости от четверти их расположения, для серийного и модернизированного гидравлических вращателей планетарного типа, согласно выражениям [12,14]:

$$\boldsymbol{M}_{i} = \sqrt{\left[\boldsymbol{R}_{\boldsymbol{u}}^{0} \cdot \cos\boldsymbol{\alpha}_{i} \mp \boldsymbol{R}_{\boldsymbol{\kappa}\boldsymbol{p}} \cdot \cos\boldsymbol{\beta}_{\boldsymbol{\mu}_{i}} \mp \boldsymbol{e}\right]^{2} \pm \left[\boldsymbol{R}_{\boldsymbol{u}}^{0} \cdot \sin\boldsymbol{\alpha}_{i} \mp \boldsymbol{R}_{\boldsymbol{\kappa}\boldsymbol{p}} \cdot \sin\boldsymbol{\beta}_{\boldsymbol{\mu}_{i}}\right]^{2}},(10)$$

причем должно выполняться условие $0 \le M_i \le |r_p + r_{\kappa p}|$, иначе окна перекрываться не будут.

серийного и модернизированного гидровращателей

Выводы. В результате проведенных исследований обоснованы начальные условия и исходные данные для моделирования работы вытеснительной и распределительной систем гидравлических вращателей планетарного типа, что позволяет на базе разработанной математической модели их работы, реализованной с помощью пакета имитационного моделирования VisSIM, моделировать изменение зазора между зубьями элементов вытеснительной системыи изменение геометрических параметров распределительной системы в зависимости от конструктивных особенностей их элементов в любой момент времени, с целью проведения параметрических исследований.

Литература:

1. Гидравлические вращателиРПГ [Электронный ресурс]. Режим доступа: http://gidromash.lipetsk.ru.

2. *Ерасов* Ф.Н. Новые планетарные машины гидравлического привода / Ф.Н.Ерасов. – Киев.: УкрНИИНТИ, 1969. – 55 с.

3. Панченко А.И.Гидромашины с циклоидальной формой вытеснителей, применяемые в силовых гидроприводах мобильной техники / А.И. Панченко, А.А. Волошина //Интердрайв – 2012: Официальный каталог IX форума и выставки (Москва, 27-30 марта 2012 года). – Москва, 2012. – С.179-194.

4. Панченко А.И.Исследование влияния геометрических параметров распределительных систем на функциональные параметры планетарных гидромоторов / А.И. Панченко, А.А. Волошина, И.И. Милаева, Д.С. Титов //Праці ТДАТА. – Мелітополь, 2006. – Вип. 38. – С. 45-55.

5. Панченко А.И.Конструктивные особенности и принцип работы гидровращателей планетарного типа / А.И. Панченко, А.А. Волошина, В.П. Кувачев, И.А. Панченко //Праці ТДАТУ. – Мелітополь, 2012. – Вип. 12. – Т.3. – С. 174-184.

6. Панченко А.И.Конструктивные особенности и принцип работы гидромашин с циклоидальной формой вытеснителей / А.И. Панченко, А.А. Волошина // Промислова гідравліка і пневматика, 2010. – №3(29). – С. 57–69.

7. Панченко А.И.Обоснование геометрических параметров вытеснителей, образованных циклоидальными кривыми / А.И. Панченко, А.А. Волошина, С.В. Кюрчев, А.И. Засядько// Праці ТДАТУ. – Мелітополь, 2009. – Вип. 9. – Т.5. – С. 61-67.

8. Панченко А.И.Обоснование путей улучшения выходных характеристик гидровращателей планетарного типа / А.И. Панченко, А.А. Волошина, И.И. Милаева, Д.С. Титов// Праці ТДАТУ. – Мелітополь, 2009. – Вип. 9. – Т.5. – С. 68-74.

9. Панченко А.И.Математическая модель гидроагрегата с планетарным гидромотором/ А.И. Панченко//Промислова гідравліка і пневматика, 2005. – №4(10). – С. 102-112.

10. Панченко А.И.Математическая модель гидромотора привода активных рабочих органов мобильной техники / А.И. Панченко, А.А. Волошина, С.Д. Гуйва//Праці ТДАТА. – Мелітополь, 2006. – Вип. 36.

– C. 165-169.

11. Панченко А.И.Математическая модель гидропривода вращательного действия /А.И. Панченко, А.А. Волошина //Науковий вісник ТДАТУ. – Мелітополь, 2011. – Вип.1. – Т.1. – С. 10-21.

12. Панченко А.И.Математическая модель рабочих процессов гидравлического вращателя планетарного типа в составе гидроагрегата / А.И. Панченко, А.А. Волошина, И.А. Панченко //Промислова гідравліка і пневматика. – 2014. – №1 (43). – С. 29-41.

13. Панченко А.И.Методика проектирования элементов вытеснительных систем гидровращателей планетарного типа / А.И. Панченко, А.А. Волошина, И.А. Панченко // Вісник НТУ «ХПІ». Серія: Енергетичні та теплотехнічні процеси та устаткування. – Х.: НТУ «ХПІ». – 2014. – № 1(1044). – С. 136-145.

14. Панченко А.И. Методика проектирования элементов распределительных систем гидровращателей планетарного типа / А.И. Панченко, А.А. Волошина, А.И. Засядько // Праці ТДАТУ. – Мелітополь. – 2013. – Вип. 13. – т.б. – С. 82-101.

ПОЧАТКОВІ УМОВИ МОДЕЛЮВАННЯ РОБОТИ ГІДРАВЛІЧНОГО ОБЕРТАЧА ПЛАНЕТАРНОГО ТИПУ

Волошина А.А.

Анотація— робота присвячена розробці початкових умов моделювання роботи витискувальної і розподільної систем гідравлічного обертача планетарного типу для визначення впливу геометричних параметрів елементів витискувальної та розподільної систем на вихідні характеристики гідравлічного обертача планетарного типу.

INITIAL CONDITIONS FOR SIMULATION OF THE PLANETARY HYDRAULIC ROTATOR OPERATION

A. Voloshina

Summary

A paper is devoted to the development of initial conditions for simulation of displacing and distribution systems of a planetary hydraulic rotator to determine the effect of geometrical parameters of elements of displacing and distribution systems on the output characteristics of the planetary hydraulic rotator.