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Abstract: The paper addresses the problem of modeling a smooth contour interpolating a point series
belonging to a curve containing no special points, which represents the original curve with specified
accuracy. The contour is formed within the area of possible location of the parts of the interpolated
curve along which the curvature values are monotonously increased or decreased. The absolute
interpolation error of the point series is estimated by the width of the area of possible location of
the curve. As a result of assigning each intermediate point, the location of two new sections of the
curve that lie within the area of the corresponding output section is obtained. When the interpolation
error becomes less than the given value, the area of location of the curve is considered to be formed,
and the resulting point series is interpolated by a contour that lies within the area. The possibility to
shape the contours with arcs of circles specified by characteristics is investigated.

Keywords: monotone curve; tangent circle; adjacent circle; area of location of the curve; contour

1. Introduction

Modeling is an effective tool for investigating objects, phenomena, and processes.
Geometric modeling of an object often determines its functional properties. Such objects
are, first of all, items bounded by functional surfaces which ensure the laminar nature of
the item’s flow around by the environment–gas, liquid, or loose materials [1–3]. Examples
of items limited by functional surfaces are automobile and aircraft hulls, working bodies of
agricultural machinery, impeller blades of turbines, and compressors.

Complex surfaces are typically modeled based on linear frameworks whose elements
are formed by interpolation of point series. The operating performance of the item is
ensured by the geometric characteristics of the interpolated curves.

The improved aero- and hydrodynamic properties of the surface ensure the use of
lines with regular variations in the values of characteristics and a minimum number of
special points according to the statement of the problem as elements of the framework [4,5].
For a plane curve, these are the junction points of the convex and concave parts and
the points where the curvature values are extreme. A smooth, plane curve that contains
no special points will be referred to as a curve with a monotone curvature change or a
monotone curve.
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If a surface is modeled with the aim of creating a copy of an existing item (reverse
engineering), the task of interpolating a point series becomes even more complex. In this
case, the interpolation accuracy requirement is added to the requirement of ensuring the
necessary characteristics of the interpolated curve [6].

In order to solve the stated problem, it is necessary to develop an interpolation
method which ensures control of the change pattern of its characteristic values along the
modeled curve, the possibility of local correction of the resulting solution, and prevention
of uncontrolled emergence of special points.

The possibility of local correction of the shape of the interpolated curve while con-
trolling its characteristics at output points is provided by methods of interpolation of the
point series with a contour. The contour is formed by sections of analytically defined
curves, which are connected at output points with a specified order of smoothness [7].
These are methods of interpolation by sections of second-order curves, Bézier curves, and
B-splines [8–12].

Among the methods of interpolation of the point series with a contour, B-spline
interpolation provides the greatest possibilities to adjust the sections of the contour.

A spline is defined by a set of control points, each of which has a transition function.
It is a composite curve, each segment of which defines a separate equation. The curve
approximates the broken line connecting the control points. The configuration of this
broken line makes it possible to control the presence of inflection points in the B-spline.

The main disadvantage of B-spline interpolation as well as interpolation with other
analytically defined curves is the lack of mechanisms to control the occurrence of points
with extreme curvature. This disadvantage reduces the possibilities of using analytically de-
fined curves while modeling shapes with the given characteristics and, above all, contours
designed for modeling surfaces with specified functional properties.

Papers [7,9] solve the problem of interpolation of a point series by a contour consisting
of smoothly joined arcs of circles. When each section is formed by an arc of one circle,
local adjustment of the contour is not possible. The change of the radius of any of the
arcs changes the configuration of all the sections of the contour. The problem is solved
by forming sections with two or more arcs of circles at fixed positions of tangents to the
contour at output points. In this case, adjustment of an individual section does not imply a
reconfiguration of other sections of the contour.

The problem of forming a contour along which the radii of the arcs of circles change
monotonically as well as the problem of ensuring the specified interpolation accuracy is
not considered in [7,9].

The aim of the study is to develop a method for forming a smooth contour interpolat-
ing a point series that represents a monotone curve with specified accuracy.

In order to achieve this aim, the following objectives should be pursued:

• develop a method for forming the area of the monotone curve interpolating a given
point series whose width does not exceed a specified value;

• to develop a method for forming a smooth contour consisting of arcs of circles, which
interpolates the given point series and is located within the area of the monotone curve;

• to investigate the possibilities of the proposed method in solving the problem of
interpolation of a given point series.

2. Materials and Methods

Formation of the area of location of the monotone curve is illustrated by the point
series, which can be interpolated by a curve with a monotonous increase in the radii of
curvature. Let us consider the following tasks:

• analyzing a output point series, which makes it possible to identify its parts that can
be interpolated by a monotone curve;

• determining the absolute interpolation error of a point series by a monotone curve.

The analysis of the output point series is based on determination of the radii of adjacent
circles (AC), each of which passes through three consecutive points in the series. The part
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of the point series along which the range of AC increases or decreases may be interpolated
by a monotone curve along which the radii of curvature increase or decrease accordingly.

The absolute interpolation error of a section of a point series of a monotone curve is
determined by the width of the area bounded by arcs of the corresponding AC (∆AC

i )
For section (i, i + 1), this area is bounded by the arc ACi, which passes through the

points i− 1, i, i + 1 and the arc ACi+1 (Figure 1).

Figure 1. Area of location of the monotone curve.

If the positions of the tangents ti, ti+1 and the radii of curvature Ri, Ri+1 are known at
the points of the monotone curve i and i + 1, then the absolute error of interpolation of its
sections can be determined more precisely.

It is established that, for lines ti and ti+1 tangent to the monotone curve along which
the radii of curvature increase monotonously, the distances from the intersection point of
the lines (point T) to the points of tangency with the curve (Figure 2) correlate as

|i, T| < |T, i + 1| (1)

Figure 2. Refinement of the area of location of the monotone curve.

Correlation (1) can be used as a criterion for the correct assignment of tangent lines in
the formation of a contour with specified accuracy representing the monotone curve. For
section of the curve (i, i + 1), the error is estimated by the maximum distance between the
two boundaries (Figure 2):

• a boundary consisting of the arc of the tangent circle at point i (TCi) and the arc of the
circle tangent to TCi and line ti+1 at point i + 1(Ciri+1). For the curve along which the
radii of curvature increase, this limit of the area is lower (closest to the chord [i, i + 1]);

• a boundary consisting of the arc of the tangent circle at point i + 1 (TCi+1) and the arc
of the circle tangent to TCi+1 and line ti at point i (Ciri).

If the values of absolute interpolation error are greater than the given value, more
interpolated curve points specifying the interpolated curve must be assigned to the corre-
sponding sections of the original curve.
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If the values of absolute interpolation error ∆AC
i are greater than the given value,

more interpolated curve points specifying the interpolated curve must be assigned to the
corresponding sections of the original curve.

The final solution can be represented in the form of an accompanying broken line,
the distance from which to the curve with the specified geometric characteristics does not
exceed a predetermined value. The use of contours consisting of straight line sections in
the modeling of functional surfaces reduces their aero- and hydrodynamic properties [7]

Let us define the constraints on the location of the section of the curve located between
two consecutive output points.

The most accurate estimate of the area of the monotone curve is possible when the
position of the centers of curvature Ci and Ci+1 for points i and i + 1 is known. To define
the boundaries of the area, the positions of tangent lines to the monotone curve at output
points are predefined. Positions of the tangents must meet condition (1). One option for
determining the necessary location of the tangents is to assign them within the ranges
limited by AC at output points. For i point of the series, the range is bounded by the
tangent to ACi (tACi) and the tangent nearest to it ACi−1 and ACi+1 (Figure 1).

Once the tangent to the monotone curve has been assigned at each of the output
points, the upper and lower boundaries of the area of possible location of the monotone
curve interpolating the point series are determined.

The lower boundary of the area is represented by the arc TCi and the arc of the circle
Ciri+1 tangent to the curve at point i + 1, and with TCi at some point A (Figure 3).

Figure 3. Lower boundary of the area of location of the section of the monotone curve .

The given data for determining the lower boundary of the area are the position of
the normal of the curve ni and ni+1 at points i and i + 1, and the position of the center of
curvature Ci.

The problem reduces to determining the position of the center of Ciri+1 (point Oi+1).
Let us introduce the following notations to be used for the problem: Ti—the point where
normals ni and ni+1 intersect (Figure 3); Ti+1—the point where normals ni+1 and ni+2
intersect; b = |Ti, Ti+1|; a1 = |Ci, Ti|; m = |i + 1, Ti|, Si - the area of the triangle Ci, Ti, Ti+1.

The position of the center of Ciri within the segment [Ti, Ti+1] is unambiguously
determined by the correlation:

Mi+1 =
|Ti, Oi+1|

b
(2)

Based on the tangency of the arcs i− A and A− i + 1:

|Ci, Oi+1| = m− Ri + Mi+1 · b (3)
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Based on the triangle Ci, Oi+1 K:

|Ci, Oi+1|2 = |K, Ci|2 + |K, Oi+1|2 = a2
1 + 2a1|Ti, K|+ M2

i+1 · b2 (4)

The length of the segment [Ti, K] shall be determined as a leg of the triangle Ti, K, Oi+1 :
|Ti, K|2 = M2

i+1 · b2 − |K, Oi+1|2.
The length of the segment[K, Oi+1] shall be expressed through the area (S1) of the

triangle C1, Oi+1, Ti as |K, Oi+1| = 2S1
a1

.
By expressing S1 = MSi, let us bring expression (4) to:

|Ci, Oi+1|2 = a2
1 + 2Mi+1

√
a2

1b2 − 4S2
i + M2

i+1 · b2 (5)

Having plugged (3) into (5) after transformations, we obtain:

Mi+1 =
a2

1 − (m− Ri)
2

2(b(m− Ri)−
√

a2
1b2 − 4S2

i )
(6)

The upper boundary is formed by the arc TCi+1 and the arc of the circle Ciri, which is
tangent to the curve at point i, and with TCi at some point B.

The problem of determining the upper boundary of the area of the monotone curve is
reduced to calculating the coordinates of the center of Ciri (point Oi). The given data for
the problem are the position of the normals ni, ni+1, ni+2 and the center of curvature Ci+1.

The position of Oi within the segment [Ti+1, Ti] (Figure 4) is determined by
the correlation:

Mi =
|Oi, Ti|

a
(7)

where a = |Ti+1, Ti|.

Figure 4. Upper boundary of the area of location of the section of the monotone curve .

As a result of manipulations similar to those done in the derivation of expression (6),
we obtain:

Mi =
b2

1 − (R2
i+1 − l)2

2(a(Ri+1 − l)−
√

a2b2
1 − 4S2

i+1)
(8)

where l = |i, Ti|, a = |Ti+1, Ti|, b1 = |Ti, Ci+1|, and Si+1 is the area of the triangle
Ti+1, Ti, Ci+1.

At the specified position of normals ni, ni+1 and the center of curvature Ci+1, the radius
of Ciri is the maximum possible radius of curvature of the monotone curve at point i.
Similarly, the position of Ci determines the minimum possible radius of curvature at point
i + 1− R′i+1 = |Oi+1, i + 1| .

Based on this criterion, let us determine the area of the monotone curve, driven by a
random point series.
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Provided that the radii of curvature along the curve increase monotonously, the mini-
mum radius of curvature at point i Rmin

i equals zero. Here, point i is considered to be the
tangent circle of zero radius. In this case, the lower boundary of the interpolated curve is
the arc of circle Ciri+1, which is tangent to line ti+1 at point i + 1 and passes through point
i (Figure 5). The minimum possible radius of curvature that can be assigned at point i + 1,
(Rmin

i+1) is equal to the radius of Ciri+1.

Figure 5. Finding possible values of the radii of curvature.

The maximum radius of curvature that can be assigned at point i + 1 (Rmax
i+1 ) is equal

to infinity. In this case, the upper boundary of the area of location of the formed curve is
the curve consisting of the arc of the circle tangent to Ti at point i and to ti+1 at point M Ciri
and the segment [M; i + 1] (the tangent circle of infinite radius). At point i, the maximum
possible radius of curvature (Rmax

i ) equals the radius of Ciri.
All curves with monotonous increase of the radii of curvature, having at points i

and i + 1 tangents ti and ti+1 respectively, pass within the area bounded by the resulting
composite curves. The radii of curvature of the curve satisfying the conditions of the
problem at points i and i + 1 must belong to the following ranges:

0 ≤ Ri ≤ Rmax
i and Rmax

i+1 ≤ Ri+1 ≤ ∞ (9)

If a monotone curve interpolates a sequence of points 1. . . n, then the minimum radius
of curvature can be equal to zero only at the first point, and the maximum radius can be
equal to infinity only at the last point.

In this case, the lower boundary of the area in which the curve is located shall be
determined in the following way.

1. In sections 1 and 2, the area is bounded by the arc of the circle passing through point
1 and having a common tangent to the curve at point 2. The specified circle is taken
as the tangent circle at point 2, whose radius is the minimum possible. Let us mark
this circle as TCmin

2
2. Taking TCmin

2 as the tangent circle at point 2, we determine the circle tangent to it and
to the monotone curve at point 3. Let us denote this circle TCmin

3 . The position of
the center shall be determined by the procedure presented in Figure 3 for point Oi+1.
The lower boundary of the area of location of the curve in sections 2 and 3 is formed
by smoothly conjoined arcs of circles TCmin

2 / TCmin
3

3. Based on the location and the size of TCmin
3 , the lower boundary of the area in

sections 3 and 4 is similarly determined, as well as the boundaries of the remain-
ing sections.

The upper boundary of the area of location of the monotone curve is determined
starting with the last section by the following scheme.

1. In section (n− 1, n), the boundary of the area consists of the tangent line segment
at point n (tn) and the arc of circle TCmax

n−1, which is tangent to tn and has a common
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tangent to the curve at point n− 1. The specified circle is taken as the tangent circle at
n− 1, whose radius is the maximum possible.

2. In section (n− 2, n− 1), the upper boundary of the area consists of the arcs of circles
TCmax

n−1 and TCmax
n−2 tangent to it which has a common tangent to the monotone curve

at point n − 2. The center of TCmax
n−2 shall be defined by the procedure presented

in Figure 4 for point Oi.
3. The upper boundary of the area of location of the curve is determined in sequence

from section to section, similarly to the boundary of section (n− 2, n− 1).

The absolute error of interpolation (δi) of a point series by a monotone curve is
estimated by the width of its possible location. In section i. . . i+ 1, the width of the area shall
be defined as the distance between lines tu

i and td
i , which are parallel to segment [i, i + 1]

and are tangent to the lower and upper boundaries of the area respectively (Figure 6).

Figure 6. Finding the absolute interpolation error.

If the interpolation error of the output point series is greater than the assigned value,
the width of the area of location of the curve is reduced by assigning intermediate points
belonging to it. The intermediate point shall be assigned to the line passing through the
middle of segment [i, i + 1], at right angles to this segment within the area of location of the
curve. By assigning each intermediate point, we obtain the location of two new sections of
the curve which lie within the area of the corresponding output section.

After the interpolation error becomes less than the specified value, the area of the
monotone curve is considered to be formed, and the resulting point series is interpolated
by a contour which lies within the area of location of the curve. It is appropriate to take the
minimum possible processing error on a numerical control machine, which is 10−3 mm,
as the value that cannot exceed the specified interpolation error [6].

To solve the posed problem, it is necessary to ensure the following:

• the presence of a common tangent to the contour and the monotone line curve at
output points;

• the increase of the radii of curvature along the contour in the same direction as the
monotone curve.

Let us consider the possibility of forming contours with specified characteristics of the
arcs of circles.

The formation of a contour consisting of two arcs of circles which replace section
[i, i + 1] with a monotone curve along which the radii of curvature monotonously in-crease
is represented in Figure 7.

Figure 7. Replacement of the monotone curve with arcs of circles.
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The circle defining the first arc (Cri1) is driven by a tangent with a monotone curve
at point i and passing through some point assigned within the area of location of the
monotone curve. For instance, this point may be the middle of a segment that is bounded
by the intersection points of the median of triangle i, T, i + 1 with the boundaries of the
area of location of the monotone curve.

The circle to which the second arc (Cri2) belongs is defined by touching the monotone
curve at point i+1 and by touching (Cri1) at some point K. As a result, we obtain a circle
with the correlation of the radii:

Rmin
i < R1 < Rmax

i and Rmin
i+1 < R2 < Rmax

i+1 and R1 < R2 (10)

where R1 and R2-radii of (Cri1) and (Cri2), respectively; Rmin
i , Rmax

i , Rmin
i+1 , Rmax

i+1 -radii of
TCmin

i , TCmax
i , TCmin

i+1 , TCmax
i+1 .

By similarly forming the arcs replacing the remaining sections of the monotone curve,
we get a contour interpolating the whole point series along which the radii of the arcs of
circles increase monotonously.

The monotonic increase of the radii of the circles along the contour in the same
direction as the increase of the radii of curvature along the monotone curve, as well as the
common tangents of the contour and the curve at output points, ensure the position of the
contour within the area of location of the monotone curve.

The main drawback of forming the contour by arcs of circles is the irregular variation
of the values of curvature at the points at which they are conjoined. Reducing the effect
of the mentioned drawback on the functional characteristics of the surface while using
the contour as an element of the framework is possible by increasing the number of arcs
constituting the contour while reducing the difference between the values of the radii of
the circles that determine them.

3. Results and Discussion

The possibilities of the method for shaping contours proposed in the paper are inves-
tigated by the example of interpolation of a sequence of ten points. The position of the
specified points was determined based on the condition of a monotonous increase in the
AC radii along the point series. The characteristics of the point series: coordinates of output
points—i(xi, yi); distance between adjacent output points—|i, i + 1|; radii of AC defined
by the point series—RAci; absolute error of interpolation of a point series by a monotone
curve, specified by the coordinates of output points—∆AC

i are given in Table 1.

Table 1. The characteristics of the point series.

i x1 y1 |i, i + 1| RAci ∆AC
i

1 0 0 5.28 - -
2 0.21 −5.28 7.20 7.41 0.4966
3 −5.11 −10.13 15.57 13.30 0.9431
4 −20.48 −7.65 25.24 20.04 1.8869
5 −28.68 16.23 28.82 32.08 1.4296
6 −13.87 40.95 34.90 53.22 0.8614
7 17.95 55.28 36.29 74.21 1.1654
8 54.24 53.04 49.65 151.68 1.3118
9 100.94 36.19 155.96 420.54 –

10 230.38 −50.82 – – –

The monotonous increase of RACi along the point series allows for interpolating it by
the monotone curve along which the values of the radii of curvature increase. The absolute
interpolation error is estimated as the maximum distance between the arcs ACi and ACi+1,
bounded by points i and i + 1 (Figure 1). In the first and the last sections, the value ∆AC

i is
not defined as AC1 and AC10 do not exist.
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The next step in formation of the contour at output points is denoting the position
of the tangents to the monotone curve interpolating the point series and the refined area
of its possible location at each of the sections. The positions of the tangents are defined
within the ranges bounded by the corresponding AC (Figure 2). The length of the sides of
triangles obtained from assigning the tangent lines–|i, i + 1|, |i, T|, |i + 1, T|; the absolute
error of interpolation of a point series by a monotone curve driven by the coordinates of
output points and the position of tangents at these points at each of the sections–∆i; the
exceedance of the lower boundary of the area of location of the interpolated curve over the
segments, connecting the corresponding output points hi, is given in Table 2.

Table 2. The result in formation of the contour.

BT

i |i, i + 1| |i, T| |i + 1, T| hi ∆i

1 5.28 3.07 3.12 0.7327 0.0140
2 7.20 3.78 3.83 0.5906 0.0078
3 15.57 7.80 9.97 1.8639 0.0218
4 25.24 13.53 16.52 3.9238 0.0595
5 28.82 13.67 16.71 2.2022 0.0629
6 34.90 16.95 19.53 2.6298 0.0922
7 36.29 15.63 21.32 1.5500 0.2184
8 49.65 20.41 29.53 1.2163 0.2257
9 155.96 69.13 88.31 4.8396 1.1281

The boundaries of the area of location of the interpolated curve are determined by
the procedure presented in Figure 6. The absolute interpolation error in section i. . . i + 1 is
defined as the distance between the lines tangent to the upper and lower boundaries of the
area of location of the curve and parallel to section [i, i + 1].

The maximum absolute interpolation error was 1.1281 mm in section 9...10.
In order to reduce the maximum absolute interpolation error in reference section 9...10,

an intermediate point and a tangent line to the monotone curve are assigned. The interme-
diate point is assigned within the area of location of the interpolated curve in section 9...10
on a line which passes through the middle of section [9,10] at right angles to segment
B. As a result, we obtain a point series consisting of 11 points where the intermediate
point is assigned No. 10. The position of the point is determined by the coordinates
xi= 168.62, yi = −2.92.

The characteristics of the area of possible location of the monotone curve interpolating
the point series are given in Table 3.

Table 3. The characteristics of the area of possible location.

BT

i |i, i + 1| |i, T| |i + 1, T| hi ∆i

1 5.28 3.07 3.12 0.7327 0.0140
2 7.20 3.78 3.83 0.5906 0.0078
3 15.57 7.80 9.97 1.8639 0.0218
4 25.24 13.53 16.52 3.9238 0.0595
5 28.82 13.67 16.71 2.2022 0.0629
6 34.90 16.95 19.53 2.6298 0.0922
7 36.29 15.63 21.32 1.5500 0.2184
8 49.65 20.41 29.53 1.2163 0.2857
9 78.16 37.03 41.39 1.5356 0.1753

10 78.16 37.63 40.65 1.0480 0.0975

For the obtained point series, the maximum absolute interpolation error was 0.2257
mm in section 8...9. By assigning intermediate points, it is possible to form a point series
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consisting of any number of points, which determines the arbitrarily small interpolation
error of the monotone curve.

The characteristics of the contour consisting of smoothly joined arcs of circles interpo-
lating a sequence of eleven points are given in Table 4.

Table 4. The characteristics of the contour.

i Ri
1 Ri

2 Hi δi Ri
1

1 4.9902 5.1701 0.7461 0.0134 4.9902
2 11.0191 11.3487 0.5962 0.0056 11.0191
3 11.4630 19.9296 1.8851 0.0212 11.4630
4 19.9359 34.1886 3.9828 0.059 19.9359
5 34.5156 53.4423 2.2646 0.0624 34.5156
6 53.5381 73.6735 2.7214 0.0916 53.5381
7 76.7344 145.9776 1.7641 0.2141 76.7344
8 163.8066 352.0208 1.4783 0.2620 163.8066
9 428.4307 537.2404 1.6269 0.0913 428.4307

10 660.3963 775.5817 1.0971 0.0483 660.3963

Each of the sections of the contour consists of two arcs of circles of radius Ri
1 and Ri

2,
accordingly, which possess a common tangent to the monotone curve at output points.
The maximum exceedance of the section of the contour over the segment connecting the
respective output points is indicated in the table as Hi. The absolute error with which
the contour replaces the monotone curve δi is estimated by the maximum distance from
the arcs of circles comprising the contour to the boundaries of the area of location of the
corresponding sections of the monotone curve.

Formation of the sections of the contour by the procedure presented in Figure 7 en-
sured its location within the area of possible location of the monotone curve. The maximum
absolute error with which the contour replaces the monotone curve was 0.2620 mm in
section 8...9.

Figure 8 represents the contour formed in the CAD system Solidworks, the characteris-
tics of which are presented in Table 4. With the aid of the CAD system, the graph of change
in curvature along the contour is formed. The resulting graph shows its monotonous
change and irregular variation at joining points of the arcs of circles. The possibility of
increasing the number of arcs forming the contour makes it possible to reduce arbitrarily
the difference of the curvature values at their joining points.

Figure 8. Graph of change in curvature along the contour.

The method proposed in the article was tested when creating a model of an impeller
of an axial and radial flow turbocharger. The initial data for the design of the geometric
model of the impeller were taken from a drawing designed for quality assurance of the
finished product. The drawing contains tabulated data specifying an ordered array of
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77 points belonging to the blade surface. The hub is driven by the axis of rotation and the
generating line.

The model of the blade surface was designed on the basis of a framework, consisting
of eleven plane sections. Each plane section was initially represented by seven points.
Analysis of the original point series showed a monotone dynamics of changes in the values
of the radii of the AC along each of them.

For example, the original point series representing the fourth section of the blade sur-
face specifies the following radii of successive AC—23.65, 29.18, 40.37, 65.74 and 160.08 mm.
The maximum error with which the original point series represents a monotone curve
is 3.017× 10−2 mm. The specified error is determined by the width of the band limited
by a sequence of adjacent circles specified by a point series. As a result of assigning the
positions of the intermediate points, a point series is obtained consisting of twenty-five
points representing the horizontal section of the blade surface. At the points obtained,
the positions of the adjacent circles of the monotone curve are assigned and the area of its
possible location is determined. The error values with which the point series represents the
sections of the monotone curve are within the range from 2× 10−4 mm to 5× 10−4 mm.
The points are interpolated by the obtained compound curve of the circles.

The eleven formed contours, each of which interpolates a point series consisting of
twenty-five points, make up a family of generating lines of the framework of the blade
surface model. The contours were imported into the CAD system SolidWorks and a model
of the working surface of the blade was obtained using the “Loft Surface” function of the
CAD system (Figure 9).

Figure 9. Model of the blade surface.

Based on the obtained frameworks of the hub and the blades, a CAD model of
the compressor impeller was created. The resulting model was used as the given data
for creating a program for processing the impeller surfaces on a CNC machine in the
CAM system PowerMill. The model of the product was imported from the CAD system
SolidWorks to the CAM system PowerMill is using direct data translators. The program
control for NC manufacturing was created using the standard functions of the CAM system.

4. Conclusions

The problem of forming a smooth contour which interpolates a point series and
represents a monotone curve with specified accuracy is solved in the paper. The following
methods have been developed in order to achieve the objective:

• forming the area of possible location of the monotone curve interpolating a given
point series the width of which does not exceed the given value;

• forming a smooth contour consisting of the arcs of circles which is located within the
area of location of the monotone curve.
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The area of possible location of the monotone curve is formed as closed contours
which are joined at output points. The width of the area is determined by the maximum
possible distance between the lines with the specified characteristics. All the monotone lines
interpolating the point series are located within the area. The developed method provides
an arbitrarily wide area by assigning intermediate points for the output point series.

The developed method for forming a contour within the area of the monotone curve
ensures its replacement with a contour with an error which does not exceed the width of
the area.

The possibilities of the proposed method have been investigated in solving the prob-
lem of interpolation of a point series consisting of 10 points using the CAD system Solid-
Works. By solving the test case, it has been established that the minimum possible interpo-
lation error is provided by a contour along which curvature values change monotonously
and which has common tangents with the monotone curve at output points. The developed
method for forming a contour by the arcs of circles meets the stated requirements.

The main field of use of the developed method is modeling of linear elements of
frameworks of surfaces with improved aero- and hydrodynamic properties, including the
use of reverse engineering.

The main disadvantage of the proposed method is that the curvature values at junction
points of the sections of the contour are irregular. While solving applied problems, the
effect of this disadvantage can be eliminated by increasing the number of sections.
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