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Abstract. We obtain asymptotic equalities for the least upper bounds of deviations of the three-harmonic
Poisson integrals from functions of the classes W5 H“ in a uniform metric in the case r >3, 0 < a < 1.
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1. Introduction

Let L be a space of 2m-periodic functions f summable on the period with the norm ||f||, =

f |f(t)|dt, let C be a space of 2m-periodic continuous functions f in which the norm is set with the

help of the equality |f|lc = max |f(t)], and let L, be a space of 2m-periodic measurable and essentially
bounded functions f with the norm || f|leo = esssup |f(t)|.
t
Let f € L, and let its Fourier series take the form

Slfl=—+ ) (agcoskzx + bgsinkx).
k=1

If r > 0, B is a fixed real number, and the series

Z k" (ak cos (k‘x + 5;) + by sin (km + 6;)) (1.1)

k=1

is the Fourier series of some summable function ¢, then the function ¢ is called the (r, §)-derivative of
a function f in the Weyl-Nagy meaning and is denoted by fé (see [1, p. 130]). The set of all functions
satisfying such condition is denoted by Wg.

Let f € WE, and let fg € H% ie., fg satisfies the Lipschitz condition of the order a:

F5a+h) - F5@) < B°, 0<a<1,0<h<2m zeR

Then f belongs to the class WTH *. For a = 0, it is considered that WTH 0= Wﬁ . For r = 3, we
get the class W"H® of functlons f with a derivative of the order r > O in the Weyl meaning which
satisfies the Lipschitz condition of the order «.

Let f € L. The quantities

Py (6; fyx 2504-26 % (ay cos kx + by sin kx) , (1.2)
k=1
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2
k=1
ap | ~— 1 2
Ps(é,f,x)=2+kz_l(1+4(3—e (11— eh)k
1 —2.9,9\ —k .
+§(1—e 3 )%k )e 5 (ay cos kz + by sinkz),§ > 0, (1.4)

are called, respectively, the Poisson integral, biharmonic Poisson integral, and three-harmonic Poisson
integral [2| of the function f.
Quantities (1.2)—(1.4) can be represented in the form of singular integrals

P,(6; f;2) = /ft—i—a: n(6;t)dt, n=1,2,3, § >0,

with kernels

1 = _k

Ky(65t) = 3 + Zeff cos kt, (1.5)

k=1
K((S-t)—1+§:<1+k(1— *§)) =% cos kt (1.6)

2(031) = 5 5 e e~ s coskt, )
k=1
o0 2
K3(6:t) = % + ; (1 + Z(s —e i) (1—e8)+ %(1 - e*%)2)e*§ cos kt. (1.7)
The present work is devoted to the study of the asymptotic behavior of the quantities

EWH P3(0))c = sup |f(-) — P3(0; f3 )l (1.8)

feWjHe

as d — oo.

Let the function ¢(d) such that E(WEH*; P3(0))c = ¢ (0) +o(¢(d)), 6 — oo, be known in the
explicit form. Following A. I. Stepanets [1, p. 198], we say that the Kolmogorov—Nikol’skii problem
is solved for the class W5H® and three-harmonic Poisson integral in a uniform metric.

The Kolmogorov—Nikol’skii problem on various functional classes was solved within the methods
of summation of Fourier series in the works by A. I. Stepanets and his disciples (see, e.g., [3-7]). We
note that the case of triangular numerical matrices was considered in the majority of works. The
asymptotic behavior of approximations of the classes of differentiable functions of a natural argument,
which depend on a real parameter §, as § — oo, was studied by the methods of summation to a
somewhat less extent. In particular, the approximative properties of Poisson integrals and biharmonic
Poisson integrals were studied on the classes of differentiable functions in works [8-21] and on the classes
WgH® in works [22-24|. As for the approximative properties of three-harmonic Poisson integrals, they
were considered in [25,26].

As is known [27], while approximating the periodic differentiable functions with singular integrals
with positive kernels [it is obvious that K;(d;¢) > 0 and Ko(d;t) > 0], it is impossible to attain a better
approximation order than 5%, d — oo. At the same time, the kernel K3(d;t) is alternating. Therefore,
it is quite significant and actual to study the rate of approximation of the classes of differentiable
functions (in particular, the classes WsH @) with the help of three harmonic Poisson integrals. In this
case, it is possible to attain a higher approx1mat10n order than - 52, as 6 — 0o. Therefore, we are faced
with the problem of search for the asymptotic equalities for quantities (1.8).
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2. Asymptotic equalities for the upper bounds of deviations of three-harmonic
Poisson integrals from functions of the classes Wz H®.

The following proposition is true.

Theorem 2.1. Forr >3,0<a <1, and § — oo, the asymptotic equality

1
EWEH; P5(6))c = 5 sup

4.0, @, 1.0
& feW;He 3f0 fo +6fo

+O(Y(r)) (2.1)
c

holds. Here, fér), r=1,2,3, are the (r, 8)-derivatives in the Weyl-Nagy meaning for 5 =0, and

Tia, 3<r+a<4,
Y(r)= Y r4+a=4, (2.2)
5T r+a>4.

Proof. For the three-harmonic Poisson integral P3(d) analogously to relation (6) in [28], we write the
summing function 7(u) as

( )_{ (1—(1+7u+9u2)6_“)6r, 0
= (1—(1+yu+bu?)e ™) u™", u

c«a\»—t

(2.3)

Y I/\

l
57

where 7 = (8) = 13— e %) (1—e5)5, 0=0(5) = L(1—e3)%% 6> 0.
The function 7(uw) which is set with the help of relatlon (2.3) can be represented in the form
7(u) = @(u) + p(u), where

(z0u+ 3u+ 2u?)0",  0<u<i,
u) = 2.4
P (u) {(42 + 1u? +% Hur, uz% 24)
(1—(1 + yu + Qu?)e v 3§2u—5u ) 0<u S%
_ 2.5
(u) { (1—(1 + yu + Qu?)e v 3§2u (ISU,Q— 6u3) r uz% (2:5)

According to Theorem 3 in [22], if the Fourier transformations of functions ¢(u) and p(u) of the
form

1 o
ot) = /go(u) cos (ut + /82) du, (2.6)
™
17 fr
p(t) = — | p(u)cos (ut + -5 du (2.7)
™
are summable on the whole number axis, the integrals
1 oo oo
=— / ] / ) cos (ut + B) du| dt, (2.8)
T
—o0 0
. « p
Ala, p) :== ] ) cos | ut + o du| dt (2.9)
—0o0 0



are convergent, and A(a, pu) = O(A(a,go)),d — 00, then, for 0 < a < 1 and 6 — oo, the asymptotic
equality

1 1
EWEH BOIe = 5 s [folo +0 (qua, m) | (2.10)
where -
T t ' foN
fow) = [ (504 3) - f5() B0y (2.11)
holds.

We now verify that the conditions of Theorem 3 in [22] are satisfied for functions ¢(u) and p(u)
of the forms (2.4) and (2.5), respectively.

The summability of transformations (2.6) and (2.7) is proved in work [29].

In order to show the convergence of the integral A(a,¢), we prove, according to Theorem 1
in [22, p. 6], the convergence of the integrals

/ ut ! (u), / o — 1[dg! ()], / (u — 1)|dg!(u), (2.12)
0 1 3
(e’ 1
Fisa, fis0-u- g0, o1
0 0

and find their upper bounds.
We now estimate the first integral from (2.12). For u € [0; %] , 0 > 2, we have

1

=

2 K
11—« / _sr < 1-« 2—« 1
/u |do' (u)| =6 / <6u +u )du§ =) (2.14)

0 0

For u € [%; 3], 6 > 2, and r > 3 with regard for ¢ (u) > 0, we get

1 1
2 3
K
11—« / _ l—a g 2
[l = [uimagw < 572
1 1
4 4
Hence,
1
/ 1
0

Let us estimate the second and third integrals in (2.12). Since

w

/2|u — 1 de’ (u)] < 2° 7u|dg0’(u)|, 7(u —1)|d¢’ (u)] < 7u|dcp’(u)\,

2

Njw

N|=
N|—=
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in view of the obvious estimate

/ uldg (u)] = O(1),6 > oo,

NI

we have

o0

/|u — 1" dy! (u)| = O(1), /(u — 1)|d¢' (u)] = O(1),6 — oo. (2.16)

3

2

Using the scheme of estimation of the first integral in formula (12) of work [15], we can find the
estimates of the integral f L 1+a‘ du on each of the segments [0; %] , [%; 1] , and [1;00). For r > 3 and

§ — 0o, we obtain

-
=

3
TP EUTHER VAR
0
1 1
mdu :/uia <3;452u1—7’ n %uz—r n éus—r> du=0O ((53_(1T+Q)> , (2.18)
: :
1 1
Relations (2.17)-(2.19) yield the estimate
|fffi’du0<53 (17,+a)>, r> 3,0 = 0. (2:20)

Analogously to formula (2.30) in [30], we can verify the validity of the equality

1¢<1—u>—¢<1+u>\du:/l\A<1—u>—A<1+u>r

ulta wlte du
0
0600 + 1o + [l + [l - 1Pl @) + o~ Dl @), (221
0

=
ol

where M(u) = 1 — g5zu — su® — fud. Since

/1 A1 —u) — A1+ u)|

ul—i—a

du=0(1),§ — oo,
0

by virtue of relation (2.21) with regard for estimates (2.15) and (2.16), we get

1
lo(1 —u) — (1 + u)| 1
/ u1+a du =0 m , T > 3, 0 — o0. (222)
0
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We have shown the convergence of integrals (2.12) and (2.13). Hence, according to Theorem 1

in [22], the integral A(q, ) is convergent. For it, the following estimate holds:

Ala, p) = (53 (1T+a)> J — oo.

(2.23)

We now prove the convergence of integral (2.9). To make this, according to Theorem 1 in [22, p.

6], we show the convergence of the integrals

D=

/laldu /ru 1y ()], /<u—1>|du’<u>r,
0 3
Pl [ a0 =w) —p(+w)]

In order to estimate the integrals in (2.24), we will study firstly the function
4 15 14

Since
7 (u) = (1454 0u?)e™ — (v + 20u)e™ — A gu — 1u2
362 4 27
~ 2
B'(u) = —(1 474 0u?)e ™ — 2(y + 20u)e " — 20 — 5w
H0) =0, 7(0) =1—~— —= <0,
p\Y) =14, 1 = gl 352
we can show that, for u > 0,
iw) <0, F(w) <0, 7"(u) <0,
By virtue of (2.27) and the inequalities
w?  uwd ot u? ol u?
—u<1_ - _ —u>1_ - _u<1_ -
e~ < u+2 6+24,e_ u+2 6,6_ u—|—2,

e >1—u, e *<1, u>0,
we get
~ 4 1 1 ¥ 1 0
o) s ) e
iCw)] < u( tom) tu (G0t ) (5 -0) Hut (g + 5
5)

|77 (u)] g( —1+@)+2u<%—’y+9+1 +3u2<%—9>+u3(%+29),

7" (u)| < 2(% —y+6+ %) +6u(

Then, with regard for the estimates

3 1 13 4 9
—1 O SR S SR
Toltsm s gm0t ss e 5 0s
1 0 1 1
— - <1 — 0 < - <
it Sl 5+60<3, 12022
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we have

~ 3 3 2
l(u)| < 53u+5—2u +5u + ut, (2.28)
6 6
’ ‘_ 53 +6—2u+ 5u + 2u?, (2.29)
~I 12 2
7" (u)| < 55%—7§u—%3u : (2.30)

In order to estimate the first integral in (2.24), we partition the segment [0; 3] into two parts: [0; 1]

and [};1],6 > 2. From (2.5) in view of estimayes (2.28)—(2.30), we obtain

=
=

6 12 K

l—ay,g,,/ r 1-a 3

/u |du' (u)] <6 / (?2 + S + 3u ) du < ST’ (2.31)
0 0

1 1

[t @ <o+ 1) [amr el

=

1
2

+or / w0 ()| du +

1 r— a|~//( )\du

|
\m\»—‘ S|

=

1
2
3 3 2
r(r+ 1)/u_r_o‘_1<53u—|— 57“ + (5” +u )d
%
1 1
[ 3.6 6 [ 6 12
+2r/ura (ﬁ + ke + 6u +2u )du + /ulro‘((S2 + S + 3u2>du. (2.32)
} }
Relation (2.32) implies that
3 0(1), 3<r4a<id,
/u1a|du’(u)] = { O(ld), rta=4 § . (2.33)
1
1 0(54_(”&)), r+a>4,
Joining (2.31) and (2.33), we get the estimate
3 0(1), 3<r+a<d,
/ul_o‘|d//(u)] = { O(Ing), r+a=4, 0 — o0. (2.34)
0 0(54 (1T+a) r+a>4,

Using (2.27) and the inequalities

e <1

— )

efugl—u—i—%, e ">1—u, u>0,
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we now estimate the function fi(u) and its derivatives in the following way:

|fi(u )‘<U(—1+7+362)+u2(§—7+6+5)+u3(§+6)7
~ _ 4 B g 2§ 1
F@)] < (= 147+ g) +ull =29 +20+ 5) +u®(5r+6+ ),

- 2 -
7 (u)] < (1—2y+20+ 5) +u(3y+1)+ (9u2 + 40u)e
Then, using the estimates

2 v 1 3
1 <y -<s Y1 204 <4
Trtsm s 0TSy g ot
3y+1<6, (49u+9 ) Y <2u, u >0,
we have
)] < Zut 202 43, u >0
HIT= 52475 =
2 4
)l < 2+ Sut e, uzo,
~11 4
)| < 2+ 5u w0
Since
3
2 [e. 9] (0.9} [ee]
Jlu=1slawwl < 2 [uld@l, [l < [ uide ),
1 1 3 1
2 2 2 2
with regard for relations (2.35)—(2.37), we get the estimate of the integral
/ —r—1 2 2 2
uldp ()| <r(r+1) [ u (62u+5u —i—u)d
1 1
2 2
T2 4 T4
+2r [ u” (52+5u+4u>du+ U (5+8u>du§K6, r > 3.
1 1
2 2
Thus,

oo

[ lu =1 @l = 001), [ (= 1idi )] = 0(). 5 x.

Njw

We now estimate the first integral in (2.25), by dividing the segment [0; 00) into three parts: [0;

[3;1], and [1;00). From formula (2.26) with regard for relations (2.28) and (2.35), we get

=

1
3
lw(w)| . - du ., 3 2 4 du K;
e du =§ |u(u)|u1+a <9 5—3u+ﬁu +5u + ot u1+adu<
0 0

- 547(r+a) ’
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(2.37)

(2.38)

(2.39)
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O(1), I<r+a<i,
O(l1 5 =4
u1+a u_/’ u1+o<+7“ ( . rta ’ d — o0,
O(54 (TM) , T+a>4,
[liw) i
w(u 2 P
u1+ /|,u u1+a+r </<u+ U +u) r=lmegy < K.
1 1
Joining the last relations, we get
00 0(1), 3<r+a<i4,
/|M1(U) O(ms), r4 o =4, 5 = oo. (2.40)
Jr
0 Y O<54_(%+a>>, r+ o >4,

In order to estimate the second integral in (2.25), we note that the equality

1 1 _ _
1—u)—p(l4+u AMl—u)— A1 +u
JEEEETLER P gL RS (XY

0

lwo

1
2 2 oo
+O(O)+ ()] + [t @] + [l = 11dg ()] + [ = Vlaw' W],
0 1
2
where A(u) = (1 + yu + 0u?)e ™ + 362u+ Fu? 4+ 2u3, holds.

Since .
M1 —u) = A1 +u)|
/ iFa du = 0(1), 6 = oo,
0

[N

with regard for relations (2.34) and (2.39), we obtain

1 . . 0(1), 3<r+a<4
/“( _“);5( Wl = 1 O(mo), rta=4, 500 (2.41)
u
0 (54 (r+a)> r+a >4,
Using formulas (2.34), (2.39), (2.40), and (2.41) and Theorem 1 in [22], we verify that the integral

A(a, ) is convergent and satisfies the estimate

0(1), I<r+a<i4,
A(a, p) = { O(Ind), rta=4, 500, (2.42)
O(Wﬁ), r4+a >4,

Hence, the conditions of Theorem 3 in [22] are satisfied, i.e., equality (2.10) holds. With regard
for estimate (2.42), as 6 — oo, we get

EWFH (@) = 5 s gl +0 (X)), (2.43)
B

where Y (r) and the function f,(x) are defined by formulas (2.2) and (2.11), respectively.
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It is possible to show that the Fourier series of the function f,(x) has the form (see, e.g., [28])

S(fo(x)] = Z ® <I§> k" (ay, cos kx + by sin k),
k=1

where ay, by are the Fourier coefficients of the function f. From whence, in view of formula (2.4), we
get

(o)

1 4 1
S(fo(x)] = peEn Z <3kz o 6k3> (ay cos kx + by sin kx).
k=1
Therefore, according to (1.1), we get
1 (4. 2 1.3
o) = g (800 + 1820 + (17 @)) (2.44)
Substituting (2.44) in (2.43), we obtain (2.1). The theorem is proved. O

Remark 2.1. Comparing the results of works [22,24] and Theorem 2.1, we see that the orders of the

approximations of the classes WgH, 1 > 3, with the help of a Poisson integral, biharmonic Poisson

1

integral, and three-harmonic Poisson integral are equal to %, L and 53, respectively.

52>
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