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Abstract. The work presents foundations of the dynamics of the flat-parallel movement of a bridge agricultural 
unit in a horizontal with the kinematic method of its control (turning the wheels) by changing the position of one 
of its parts relative to the other. The analysis of assessment of the degree of impact of the scheme and parameters 
of the investigated agricultural tool upon its controllability and stability of movement is based on the amplitude 
and phase frequency characteristics. The mathematical models of the movement of the bridge agricultural unit 
are presented in a differential and an operator form of recording. Based on mathematical models, the calculated 
amplitude and phase frequency characteristics of the dynamic control system of the control impact, presented as 
the angular displacement of its half-frames ψ, are constructed for various parameters and operating modes. The 
constructed mathematical models, amplitude and phase frequency characteristics make it possible to assess the 
impact of the control parameter of the bridge agricultural unit, as well as its design and other parameters upon 
the controllability of the movement.
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Introduction 
The analysis of scientific works on the state and 

trends in the development of agricultural mechanisation 
means is a witness that the widespread use of  traditional 
tractor-combine technologies has created a number of 
serious problems, the solution of which is impossible 
within the framework of generally accepted methods 
of growing cultivated plants (Chamen, 2015; Pogorely, 
2008; Zhalnin & Mufteyev, 2002). According to many 
scientists in the world, a perspective direction for 
sustainable development of agriculture is introduction 
of advanced technologies and technical means, which 
should include the track system of agriculture (Tullberg, 
2013; Bulgakov et al., 2020; Bulgakov et al., 2018). 
Practical implementation of the basic principles of the 
track system of agriculture, based on the traditional 
tractor-combine means of mechanisation of agricultural 
production, is complicated by certain problems in 
their use. Some of them should include impossibility 

of adjustment the parameters of the running systems 
of serial machine-and-tractor and combine aggregates 
to the parameters of a constant tramline, the traction 
properties of the power (energy) equipment with the 
operating width of the agricultural machines, etc.

According to such scientists as Pedersen HH, 
Chamen W., Onal I. and others, it is possible to 
implement this farming strategy in another most 
perspective radical way through the creation of the so-
called “wide span vehicle” (Pedersen, Oudshoorn, & 
McPhee, 2016; Onal, 2012; Bulgakov et al., 2017a). 
Typical world representatives of this kind of bridge 
agricultural equipment are the “Dowler bridge tractor”, 
BIOTRAC, ASA-Lift WS 9600, an agricultural 
vehicle of our design and others. The conducted 
tests of the indicated bridge agricultural means have 
established that their use is characterised by high 
potential technical, operational and technological 
properties. However, their testers, having made a 
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certain contribution to clarifying the prospects and 
substantiating the efficiency of the use of the bridge 
agricultural means, do not always take into account 
the possibility of practical implementation of their 
solutions (Pogorely, 2008; Bulgakov et al., 2018). 
More than that, these researchers have not developed 
an appropriate methodology for the selection and 
substantiation of the schemes, parameters and 
operating modes of the bridge agricultural equipment 
with an articulated frame during their operation 
under the conditions of the track system of farming, 
based on a substantive analysis of the stability and 
controllability of their working movement along the 
tracks of a constant tramline. 

Mathematical models of functioning of the 
conventional machine-and-tractor aggregates, 
assembled on the basis of a tractor with an articulated 
frame, cannot be used to solve this problem. This is 
mainly because of the atypical layout of the bridge 
agricultural implement, the specifics of its aggregation 
and the conditions of operation in the track farming 
system. In this connection, from the standpoint of 
efficient application of these bridge agricultural 
implements with an articulated frame, there are 
unresolved conditions to be studied that are imposed 
on their design and other characteristics. 

A wide span tractor for the controlled traffic 
farming system, like any mobile energy tool, is 
acomplex control object that can be adapted to manual 
or automatic control and built for the kinematic  or 
power principle of  turning (Bulgakov et al., 2020; 
Gasso et al., 2014). There is a well-known theory 
of turning the traditional tractor with an articulated 
frame. However, the dynamics of a flat-parallel 
movement of the bridge agricultural unit with such a 
way of turning is not studied. Because of this, at the 
first stages of research of these bridge agricultural 
units, the question of studying the dynamics of its flat-
parallel movement when executing a turn by changing 
the position of one of its parts relative to the other in 
a horizontal plane is of scientific interest. It is known 
from the tractor theory that the operation of a wheeled 
machine occurs under the action of a large number 
of disturbing factors (forces and their moments) that 
change its position in space and deviate its movement 
from the pre-set path (Bulgakov et al., 2017b). The 
quality of testing a particular dynamic system of 
the input variables depends on its characteristics. 
Concerning the bridge agricultural unit, such are its 
scheme, as well as the structural and other parameters. 
Therefore, the right choice of the latter parameters 
from the position of the necessary controllability and 
stability of its movement provides the agrotechnical 
unit with optimal transformation of the controlling 
and disturbing impacts, acting upon it.

The currently known methodology for the 
selection of design schemes, parameters and operating 
modes of the machine-and-tractor aggregates, based 
on the traditional energy tools with an articulated 
frame (Farobin, 1970), is practically not suitable for 
studying the dynamics of the movement of the bridge 
agricultural units mainly because of their atypical 
layout scheme, the specifics of aggregation and 
operating conditions. The structural and technological 
peculiarities of these bridge agricultural units require 
the development of a fundamentally new system of 
their functioning and use.

The analysis conducted by us of the well-known 
publications (Chamen, 2015; Tullberg, 2013; 
Pedersen, Oudshoorn & McPhee, 2016) should state 
that until now there is no general theory, methodology 
for calculating the bridge agricultural units and their 
individual mechanisms, that is, the mechanical and 
technological foundations of their functioning and use.

The purpose of this study is to establish the 
degree of influence of the external impacts, as well 
as structural and technological parameters upon the 
controllability and stability of movement of a bridge 
agricultural unit with an articulated frame using a 
kinematic method of controlling it by turning the 
semi-frames.

Materials and Methods 
The conducted theoretical studies are based on the 

use of elements of theoretical mechanics, the theory of 
mobile energy tools, statistical dynamics and the theory 
of automatic regulation of linear dynamic systems 
when they reproduce statistically random control and 
disturbing input impacts. In particular, the analysis of 
assessment of the degree of influence of the scheme and 
parameters of the investigated agricultural tool upon 
its controllability and stability of movement is based 
on the amplitude and phase frequency characteristics 
(Bulgakov, Adamchuk & Kuvachov, 2017c).

In order to carry out theoretical research, we will 
present the bridge agricultural unit with the kinematic 
method of its control by changing the the position of 
one part relative to the other in a horizontal plane in 
the form of an equivalent scheme (Figure 1) on which 
we reflect the forces acting on it.

The external forces, acting upon the bridge 
agricultural unit during its flat-parallel movement 
with the kinematic control method by turning the 
semi-frames, include (Figure 1):

Pfl1, Pfr1, Pfl2, Pfr2 – the resistance forces to rolling 
of the frontal and rear wheels of the agricultural unit;

Pkl1, Pkl2, Pkr1, Pkr2 – the tangential forces;
R, МR – the main vector and the main moment 

of forces acting from the side of the agricultural 
implements;
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Рδl1, Рδl2, Рδr1, Рδr2 – lateral forces, which lead to 
the appearance of the input angles of the frontal δl1, 
δr1 and the rear δl2, δr2 wheels of the agricultural tool.

Differential equations of the movement of the 
bridge agricultural vehicle on the equivalent circuit 
(Figure 1) with respect to the plane х1Оу1 will be 
compiled in the form of Lagrange equations of the 
second kind: 

 
 

 
Figure 1. An equivalent scheme of a bridge agricultural unit with its flat-parallel movement in a horizontal plane 
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In the course of studies of the mathematical model 
(3), describing the plane-parallel movement of the 
bridge agricultural implement with an articulated 
frame in a horizontal plane, it was assumed to 
determine the degree of impact of the turning 
frequency of its half-frames (frequency of the 
control action), as well as the design parameters of 
the considered dynamic system upon its amplitude 
and phase frequency specifications. The indicated 
amplitude and phase frequency characteristics were 
calculated on a PC using the Mathcad program. 

As regards the considered dynamic system of 
the movement of the bridge agricultural implement 
in a longitudinal-horizontal plane, the parameters of 
the control impact and its design parameters were 
chosen in the process of research on the basis that, 
for the tracking system in the operating frequency 
range ω, the ideal (or desired) amplitude-frequency 
characteristics of the initial values for the control the 
impact should be close to one, or have a sufficient 
degree of amplification, and for the disturbing impact 
it should be equal to zero. In addition, it is desirable 
that the phase shift in the control impact tends to zero, 
and in the disturbing one, on the contrary, be as large 
as possible (tends to infinity). 

Results and Discussion
The characteristics of the angular displacement of 

the half frames ψ made by the bridge agricultural unit 
are presented in Figure 2 and Figure 3.

Analysis of the calculated amplitude and phase 
frequency characteristics (Figure 2 and Figure 3) 
showed that the controllability of the bridge 
agricultural unit substantially depends on the width of 
its track К. With increasing this parameter to 9.6 m, 
which corresponds to the ASA-Lift WS 9600 bridge 
implement, we have a significant underregulation in the 
dynamic control system (angular deviation ψ) (Curve 
2, Figure 2). Only at a low frequency of the control 
impact (ω = 0.5 s−1) does the dynamic system tend to an 
ideal characteristic. At the same time, at this frequency 
the bridge agricultural implement with a smaller track 
width of 3.5 m, which corresponds to an agricultural 
vehicle, has a gain of the input control impact A > 1, 
which contributes to readjustment of the dynamic 
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system (Curve 1, Figure 2). In this case, the desired 
frequency of fluctuations of the angular displacement ψ 
for the half-frames of the bridge agricultural implement 
is at the level of 1.5 s−1, at which the value of the gain of 
the input control impact is A = 1. 
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Figure 2. The amplitude (A=j/ψ) and frequency 
characteristics of fluctuations in the heading angle φ 
of the agricultural unit performing the control impact 
(the turning angle ψ of the semi-frames) for various 

values of its track width: 1 – К = 3.5 m;  
2 – К = 9.6 m; 3 – ideal characteristics.

 
 

Figure 2. The amplitude (A=ϕ/ψ) and frequency characteristics of fluctuations in the heading angle φ of the 
agricultural unit performing the control impact (the turning angle ψ of the semi-frames) for various values of its track 

width: 1 – К = 3.5 m; 2 – К = 9.6 m; 3 – ideal characteristics. 

Analysis of the calculated amplitude and phase frequency characteristics (Figure 2 and Figure 3) showed that 
the controllability of the bridge agricultural unit substantially depends on the width of its track К. With increasing this 
parameter to 9.6 m, which corresponds to the ASA-Lift WS 9600 bridge implement, we have a significant 
underregulation in the dynamic control system (angular deviation ψ) (Curve 2, Figure 2). Only at a low frequency of 
the control impact (ω = 0.5 s−1) does the dynamic system tend to an ideal characteristic. At the same time, at this 
frequency the bridge agricultural implement with a smaller track width of 3.5 m, which corresponds to an agricultural 
vehicle, has a gain of the input control impact A > 1, which contributes to readjustment of the dynamic system (Curve 
1, Figure 2). In this case, the desired frequency of fluctuations of the angular displacement ψ for the half-frames of the 
bridge agricultural implement is at the level of 1.5 s−1, at which the value of the gain of the input control impact is A = 
1.  

However, at low frequencies of the impact the response delay of the dynamic system is as far as possible from 
the ideal characteristic (see Fig. 3), and is more than 1 rad. And only with an increase in the frequency ω to 5.5 s−1, the 
phase-frequency characteristics tend to the ideal. It is worth noting that the increase in the track width of the bridge 
agricultural implement to 9.6 m, the delay in the response of the dynamic system to the control impact is somewhat 
less than for the agricultural implement with a track width of 3.5 m (Figure 3). However, this difference does not 
exceed 0.05 rad.  

Consequently, it should be concluded that for the control of the bridge agricultural implement by turning it 
with half-frames the most efficient option is in which its track width is not large and is within 3.5 m.  

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.5 1.5 2.5 3.5 4.5 5.5
 Frequency  ω, s−1 

Ph
as

e 
 Ф

, r
ad

  1 

2 3 

 

Figure 3. The phase-frequency characteristics of fluctuations in the heading angle φ of the bridge agricultural unit 
when exerting the control impact (the turning–g angle of the half-frames ψ) with different values of its track width: 1 

– К = 3.5 m; 2 – К = 9.6 m; 3 – an ideal characteristic. 

The controllability of the agricultural bridge unit with the kinematic method of controlling it by substantially 
shifting the half-frames depends on the speed of the movement (Figure 4 and Figure 5). At the same time the maximum 
amplitude of the lateral deviation of the bridge agricultural unit at a low speed regime (Vo = 1 m·s−1) in the low-
frequency region ω is at the level of 2 m per 1 rad. of fluctuations of angle ψ (Figure 4). 

Figure 3. The phase-frequency characteristics of 
fluctuations in the heading angle φ of the bridge 

agricultural unit when exerting the control impact 
(the turning–g angle of the half-frames ψ) with 

different values of its track width: 1 – К = 3.5 m;  
2 – К = 9.6 m; 3 – an ideal characteristic.

However, at low frequencies of the impact the 
response delay of the dynamic system is as far as 
possible from the ideal characteristic (Figure 3), 
and is more than 1 rad. And only with an increase 
in the frequency ω to 5.5 s−1, the phase-frequency 
characteristics tend to the ideal. It is worth noting that 

the increase in the track width of the bridge agricultural 
implement to 9.6 m, the delay in the response of the 
dynamic system to the control impact is somewhat 
less than for the agricultural implement with a track 
width of 3.5 m (Figure 3). However, this difference 
does not exceed 0.05 rad. 

Consequently, it should be concluded that for the 
control of the bridge agricultural implement by turning 
it with half-frames the most efficient option is in which 
its track width is not large and is within 3.5 m. 

The controllability of the agricultural bridge 
unit with the kinematic method of controlling it by 
substantially shifting the half-frames depends on the 
speed of the movement (Figure 4 and Figure 5). At 
the same time the maximum amplitude of the lateral 
deviation of the bridge agricultural unit at a low speed 
regime (Vo = 1 m·s−1) in the low-frequency region ω is 
at the level of 2 m per 1 rad. of fluctuations of angle 
ψ (Figure 4).

Figure 4. The amplitude-frequency characteristics of 
the lateral displacement oscillations Xs of the bridge 
agricultural unit when exerting the control impact 
(the turning angle of the half-frames ψ) at different 

speeds of its movement: 1 – Vo = 1 m·s−1;  
2 – Vo = 3 m·s−1; 3 – the desired characteristic.

Increasing the speed regime of the movement of 
the agricultural unit to Vo = 3 m·s−1, the amplitude of 
its lateral deviation increases more than 16 m·rad.–1 
(Figure 4), which can practically lead to readjustment 
of the dynamic system and complexity of control of 
the agricultural unit, as well as to an increased tramline 
width by increasing the technological tolerance. In the 
frequency range of the angle ψ fluctuations, greater 
than ω ≥ 2 s−1, the amplitude of the lateral deviation 
of the agricultural unit decreases and does not exceed 
2 m·rad−1.

The delay in the response of the dynamic system 
to the transverse displacement Xs of the bridge 
agricultural implement when it is developing the 
control impact (the turning angle of the half frames ψ) 
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practically depends little on the change in frequency 
ω in the operating range of 0.5… 5.5 s−1 (Figure 5). 
Besides, at a high speed the mode of movement of 
the bridge agricultural implement (Vo = 3 m·s−1), the 
phase-frequency response is closer to the ideal than at 
a low speed of its movement. However, this difference 
does not exceed 0.5 rad. On the whole, the phase of 
the reaction delay of the dynamic system is at the level 
of 3 ± 0.5 rad in the range of speeds of movement of 
the bridge agricultural implement 1 ... 3 m·s−1.

Figure 5. The phase-frequency characteristics of 
oscillations of the transverse displacement Xs of the 
agricultural unit when exerting the control impact 
(the turning angle of the half-frames ψ) at various 

speeds of its movement: 1 – Vo = 1 m·s−1;  
2 – Vo = 3 m·s−1; 3 – the desired characteristic.

Conclusions
Mathematical model has been developed, and 

new regularities of the flat-parallel movement of a 
wide-span agrocultural unit for the controlled traffic 
farming system with a kinematic method of its control 
have been obtained, which allow theoretically to 
substantiate the new schemas, the design parameters 
and operating modes with acceptable controllability 
the movement a horizontal plane.

The nature of the amplitude and phase frequency 
characteristics substantially depends on the width of 
the track of the agricultural tool and the speed of its 
movement. The bridge agricultural implement with a 
smaller track width of 3.5 m, which corresponds to 
an agricultural vehicle, has a gain of the input control 
impact A > 1, which contributes to readjustment of  
the dynamic system. With increasing this parameter 
to 9.6 m, which corresponds to the ASA-Lift WS 
9600 bridge implement, we have a significant 
underregulation in the dynamic control system. From 
apposition to ensure better controllability of the 
bridge agricultural unit with the kinematic method 
of its control by turning the half-frames, the desired 

frequency of fluctuations of angle ψ should be at the 
level of 1.5 s−1.

Increasing the speed regime of the movement of 
the agricultural unit to Vo = 3 m·s−1, the amplitude of 
its lateral deviation increases more than 16 m·rad–1, 
which can practically lead to readjustment of the 
dynamic system and complexity of control of the 
agricultural unit, as well as to an increased tramline 
width by increasing the technological tolerance. In the 
frequency range of the angle ψ fluctuations, greater 
than ω ≥ 2 s−1, the amplitude of the lateral deviation 
of the agricultural unit decreases and does not exceed 
2 m·rad−1.
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