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ABSTRACT 

The article exposes the results of the mathematical simulation of the agricultural bridge equipment 

functioning. The mathematical models describing the functioning of the agricultural bridge equipment were 

checked for adequacy by comparing the theoretical and experimental amplitude-frequency characteristics of 

the oscillations of its heading angle and lateral displacement. It was established by the result of investigated 

characteristics’ quantitative assessment that a satisfactory coincidence of the theoretical and experimental 

results, as well as a positive result of checking the adequacy of the mathematical models of the vertical and 

the horizontal oscillations of the agricultural equipment indicate a possibility of their further use for solving 

scientific and practical problems. 

 

ABSTRACT 

Rakstā aprakstīta metodika, kas paredzēta lauksaimniecības tiltu veida aprīkojuma funkcionēšanas 

matemātiskās modelēšanas rezultātu atbilstības pārbaudei, izmantojot dinamisko sistēmu automātiskās 

regulēšanas teoriju. Lauksaimniecības tiltu veida aprīkojuma darbību raksturojošo matemātisko modeļu 

atbilstība tika pārbaudīta, salīdzinot teorētiskos un eksperimentālos amplitūdas frekvences raksturlielumus tā 

virziena leņķa svārstībām un sānu pārvietojumam. Ar izpētīto kvantitatīvā novērtējuma rezultātiem tika 

noskaidrots, ka ir apmierinoša teorētisko un eksperimentālo rezultātu sakritība, kā arī pozitīvs rezultāts, 

pārbaudot lauksaimniecības tehnikas vertikālo un horizontālo svārstību matemātisko modeļu piemērotību, 

norāda uz iespēju tos turpmāk izmantot zinātnisku un praktisku problēmu risināšanai. 

 

INTRODUCTION 

Contemporary development of science and technology cannot be imagined without a wide use of the 

mathematical simulation methods. In recent years, mathematical simulation as a method of studying complex 

technical systems in agriculture has been widely used to solve various problems. They include investigations of the 

new agricultural bridge equipment in order to ensure its operation by the principle of gauge and bridge farming 

(Chamen et al., 1994; Bochtis et al., 2010; Onal, 2012; Bulgakov et al., 2017a). According to many scientists, 

such agricultural bridge equipment is a prospect for the transition from the traditional tractor-harvester technologies 

to more modern farming. And their functioning allows solving the main contradiction in the “mover-soil” system the 

essence of which is that, in order to achieve high traction and adhesion properties by the energy tool, its movers 

must be in contact with a dry and dense base while normal growth of the cultivated plants needs an optimally moist 

and fluffy soil environment (Nadykto, 2017; Adamchuk et al., 2016). This is possible only if the plant growth zone 

(the agrotechnical zone of the field) and the track of the movers of energy tools (the technological or engineering 

zone) are clearly separated in the field. In such a case the movement of the energy tools becomes strictly regulated 

(routed), and it is provided for exclusively pre-formed tracks – constant tramlines.  
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At the first stage of the theoretical research of the agricultural bridge tools, the mathematical simulation of 

their functioning, using the software and algorithmic tools and the PC, provides valuable scientific information 

about the dynamics of their plane-parallel movement, and much more. In this case one main circumstance should 

be considered that taking advantage of the methodology of mathematical simulation to study the functioning of 

such new technical systems is possible only if the physical reality is adequately reflected in the mathematical and 

computer models.  

Provided that modern software environments are used (for example, Mathematica, Statistica, 

Mathcad, MS Excel, and the like), checking the regression mathematical models for adequacy is a 

formalised procedure (Nadykto, 2017).  

However, this formalised methodological approach for checking mathematical models in terms of 

adequacy is not always acceptable and possible to be implemented. So, for example, when simulating the 

behaviour of complex dynamic systems, such as agricultural bridge tools, the most informative is the use of 

statistical dynamics methods and the theory of automatic regulation of linear dynamic systems when they 

reproduce statistically random control and disturbing input actions. According to this methodology, based on 

the constructed differential equations, transfer functions are compiled, and then the amplitude-frequency 

characteristics are calculated (Chamen, 2015; Bulgakov et al., 2016a; Bulgakov et al., 2018). At the same 

time, assessment of the adequacy of the theoretical amplitude-frequency characteristics of the development 

of the input disturbance by the dynamic system to be studied is a rather complicated task. Its complexity is 

determined by the impossibility to apply a formalised programmatic checking procedure for adequacy. 

In scientific publications (Bulgakov et al., 2016b; Bulgakov et al., 2017b), a methodology for checking 

the adequacy of mathematical models is described, the solution of which is represented by the amplitude-

frequency characteristics of the development of external disturbances acting upon it by a machine-tractor 

aggregate. But the algorithm itself of the hardware search and formalisation of the input and output 

parameters is not sufficiently presented in the indicated scientific works. 

The purpose of the research is to test the methodology for checking the results adequacy of the 

mathematical simulation of the agricultural bridge equipment functioning, using the provisions of the theory of 

dynamic systems’ automatic regulation to improve the quality of this procedure. 

 

MATERIALS AND METHODS 

There were tested for adequacy a mathematical model of the agricultural bridge tools functioning in a 

vertical and a horizontal plane, obtained by us as a result of theoretical investigations and described in detail 

in the scientific papers (Bulgakov et al., 2017c; Bulgakov et al., 2019). 

We will test the mathematical model of horizontal oscillations of the agricultural bridge equipment for 

adequacy by comparing the theoretical АТ(ω) and experimental АЕ(ω) amplitude-frequency characteristics of 

oscillations of its heading angle φ and lateral displacement хs (as the output values) when it (the agricultural 

means) works out the input control action. As the last one, the driving force of the wheels of one of the sides Pдл 

of the agricultural tool was used with the onboard power method of turning it. 

The mathematical model of vertical oscillations of the agricultural bridge equipment was checked for 

adequacy by comparing the theoretical SТа(ω) and the experimental SЕа(ω) normalised spectral densities of 

its vertical oscillations. For the input parameter we took the oscillations in the irregularities of the longitudinal 

profile of traces of a constant tramline along which the agricultural tool is moving, and for the output 

parameter – the oscillations of its frame. The theoretical amplitude-frequency characteristics of the oscillations 

of the heading angle φ and the lateral displacement xs of the agricultural bridge equipment, when it worked out 

the control action with the power control method, as well as when it worked out the oscillations of the 

irregularities of the path profile, were calculated using the corresponding transfer functions (Bulgakov et al., 

2017; Bulgakov et al., 2019, Pascuzzi et al., 2020, Ivanovs et al., 2020). To determine the experimental 

amplitude-frequency characteristic under the laboratory and field conditions, we studied the agricultural bridge 

equipment in an aggregate with the tooth harrows (type BZSS-1.0) (Fig. 1), which are structurally made like 

harrow (Nadykto, 2013).  

To conduct research under the laboratory conditions, a constant tramline was artificially created on 

the soil, the longitudinal profile of the irregularities of which was finally formed by multiple passes of the 

wheels of the agricultural tool along it. The control of the agricultural bridge equipment was carried out by the 

operator in a manual mode. The principle of its control was, when the agricultural bridge equipment deviates 

from rectilinear movement along the tracks of a constant tramline, the operator monitors the movement of a 
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special device. In this role was the centre of the wheel of one of the sides of the agricultural tool at the level 

of the supporting surface passing through the central line of the tire track. The task of the control of the 

agricultural tool was to ensure that the centre of its wheel at the level of the supporting surface is as close as 

possible to the axis of symmetry of the constant tramline.  

 

 
Fig. 1 - Agricultural bridge equipment as part of a harrowing aggregate, during the research  

 

The operator corrected deviation of the trajectory of the sighting point by reducing (almost to zero) 

the tangential traction force Pдл on the wheels of the agricultural tool from one of its sides. In particular, if 

there was a right-hand deviation of the agricultural tool from the direction of its movement, then the tangential 

traction force decreased on the left side wheels, and vice versa. As a result of this operator’s action the 

agricultural tool changed its heading angle accordingly. Acceptable controllability of the movement of the 

agricultural bridge equipment was achieved when the duration of the control action was sufficient so that it 

was able to compensate for the amplitude of its heading angle or lateral displacement without leaving the 

wheels beyond the established constant tramline width. 

In the process of experimental tests of the agricultural bridge equipment by means of an analogue-

to-digital converter, a PC and a mobile communicator, there were simultaneously recorded:  

– the heading angle φ (deg.); 

– the vertical accelerations Z (m·s−2) of the frame of the agricultural tool;  

– duration τРдл (s) of the control action to restore its rectilinear movement as a result of deviation from it.  

The first two parameters during experimental investigations were recorded using a mobile 

communicator with the Android operating system. In this software environment, using a special 

Accelerometer Meter application (version 1.32), there were recorded in time the digitised output signals and 

their frequency spectrum from the accelerometer sensors, built into the mobile communicator (Fig. 2). 

 

          
а)       b) 

Fig. 2 - A mobile communicator (a) and Android-based Accelerometer Meter interface (b) for measuring vertical 

acceleration Z and heading angle φ of the agricultural bridge equipment  

 

Also, in the process of experimental investigations of the agricultural bridge equipment there was 

measured the amplitude xs of its lateral deviation from the axis of symmetry of the constant tramline. For this 

purpose, the shortest distance from the axis of symmetry of the constant tramline to the midpoints of the 

trajectories of its front and rear wheels from one side with a step of 0.2 m was measured (Fig. 3). 
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Fig. 3 - A scheme for the determination of the agricultural tool lateral displacement: 

1, 2 – respectively, the middle points of the trajectories of its frontal and rear wheels within the tramline  

 

Since the amplitude of the heading angle φ of the agricultural bridge equipment did not exceed 

6...8 degrees, the amplitude xs of the transverse displacement of its mass centre was calculated with 

sufficient accuracy according to Fig. 3 by expression: 
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where xf , xb  – the distances (m) from the axis of symmetry of the constant tramline to the middle of the 

trajectories of the frontal and rear wheels of the agricultural equipment, respectively. 

The characteristics of irregularities’ oscillations of the longitudinal profile of constant tramline traces 

were recorded using an automated profilograph with an analogue-to-digital converter and a PC (Fig. 4) 

according to the method, described in detail in (Bulgakov et al., 2019). 

 
Fig. 4 - A hardware-measuring complex for profiling the irregularities of a constant tramline traces 

 

From the obtained arrays of realisations of the input and output parameters, such statistical 

characteristics as standard deviations and normalised spectral densities were determined using the 

technique, presented in (Nadykto, 2017; Gmurman, 2016). 

The experimental amplitude-frequency characteristic of the functioning of the agricultural bridge 

equipment was calculated according to expression (Nadykto, 2017): 
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where: 

σx, Sx(ω) – the mean-square deviation and normalised spectral density of the input quantity;  

σy, Sy(ω) – the mean-square deviation and normalised spectral density of the output quantity;  

ω – the frequency of oscillations of the control impact, s−1. 

The theoretical spectral density of the output parameter oscillations was found according to expression 

(Nadykto, V., 2017): 

 
( )

2
( )

( )
Т х x

Т

y

А S D
S

D

 


 
=  (3) 

where:  

Sx (ω), Dx – the normalised spectral density and dispersion of oscillations of the input value;  

Dy – dispersion of oscillations of the input value. 

Dispersions of the characteristics of random processes at the output of a linear dynamic system were 

found according to expression: 
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where: 

ωst, ωzr – the initial value of the frequency range of the spectral characteristics and the cut-off 

frequency. 

Since the ordinate of the spectral density of oscillations of the agricultural tool frame vertical 

accelerations has a unit of measurement m·s−2, which is the implementation of the signals from the 

accelerometer sensors, in order to pass to the linear amplitude zy (m), the ordinate of the points of the 

indicated spectral density, were recounted with some assumption and with sufficient accuracy as follows: 
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where: 

Z – acceleration of vertical oscillations according to the data of the Accelerometer Meter software 

environment, m·s−2;  

Т – the time, equal to the length of the correlation of the density of accelerations of the agricultural tool 

vertical oscillations, s. 

A quantitative statistical assessment of the compared theoretical and experimental data adequacy was 

done by testing the null hypothesis on the equality of the compared dispersions of the initial value fluctuations 

according to the Fisher F-test. If the calculated value of the Fisher F-test was less than the critical value, then the 

zero hypothesis on the equality of the compared variances was not rejected (at a certain statistical significance 

level). Besides, the number of the degrees of freedom was taken equal to 10, since the graphs of the spectral 

density of fluctuations of the considered input and output parameters were calculated from such a number of 

points. In such a case the critical value of the Fisher F-criterion at a statistical significance level of 0.05 was 2.97, 

and at a level of 0.01, it was 4.84, respectively. 

 

RESULTS AND DISCUSSION 

As the analysis of the obtained and processed experimental data showed, the fluctuation spectrum of 

the control impact of the agricultural bridge equipment with the onboard power method of its control is of low-

frequency nature (Fig. 5). The main dispersion spectrum of this parameter is concentrated in the frequency 

range 0...2 s−1, which corresponds to 0...0.32 Hz. Almost in the same frequency range, the dispersion of 

fluctuations of the output parameter, that is, the heading angle φ of the agricultural tool is also concentrated 

(Fig. 5). The standard of fluctuations of this parameter was ± 0.014 rad. 
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Fig. 5 - Normalised spectral densities of fluctuations of the tangential traction force (1)  

of the agricultural tool and its heading angle (2)  

 

Further calculation of the experimental amplitude-frequency characteristic of the agricultural bridge 

equipment and its comparison with the theoretical characteristic (Fig. 6) showed that in the operating 

frequency range 0...2 s−1, the difference between the fluctuations of the input and the output signals does not 

exceed 15%. 
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Fig. 6 - Theoretical (1) and experimental (2) amplitude-frequency characteristics  

of the fluctuations in the heading angle φ  

 

The result of a quantitative assessment of the characteristics in Fig. 6 showed that, according to the 

Fisher F-test, the null hypothesis about the equality of the compared dispersions (1.57 s2 and 1.67 s2) does 

not deviate neither at the static significance level of 0.05 nor at the level of 0.01. 

Fluctuations of the lateral displacement of the agricultural bridge equipment as part of a harrowing 

aggregate are also of a low-frequency nature (Fig. 7). The main spectrum of dispersions is concentrated in 

the frequency range 0...2 s−1. The standard of fluctuations of this parameter is ± 0.05 m. 
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Fig. 7 - Normalised spectral densities of fluctuations of the linear transverse displacement хs  

of the agricultural bridge equipment  

 

Calculation of the experimental amplitude-frequency characteristic according to (2) and its 

comparison with the theoretical one showed (Fig. 8) that in the operating frequency range of  

0...2 s−1 oscillations of the input signal, the greatest difference between the theoretical and the experimental 

data does not exceed 15%.  
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Fig. 8 - Theoretical (1) and experimental (2) amplitude-frequency characteristics of the fluctuations  

of the linear transverse displacement xs of the agricultural equipment as part of the harrowing aggregate  

when working out the control impact  

 

As a result of measuring the characteristics of the irregularities of the constant tramline tracks’ 

longitudinal profile, a graph of the normalised spectral density of the amplitudes of their fluctuations was 

obtained (Fig. 9). 
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Fig. 9 - The normalised spectral density of irregularities of the constant tramline traces’ longitudinal profile, 

according to the hourly argument  

 

From the analysis of Fig. 9 it follows that the working frequency range of fluctuations in the 

irregularities of the constant tramline traces’ profile is 0...20 s−1 (or 0...3.2 Hz). In this frequency range a 

mathematical model of the dynamics of vertical fluctuations of the agricultural bridge equipment in a vertical 

plane was checked.  

A comparison of the theoretical SТа(ω) and the experimental SЕа(ω) normalised spectral densities of 

vertical oscillations of the frame of the agricultural bridge tool shows (Fig. 10) that both processes are 

characterised by approximately the same nature of the change in the frequency range. 
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Fig. 10 - Theoretical (2) and experimental (2) normalised spectral densities  

of vertical oscillations of the frame of the agricultural bridge tool  

 

The difference in the maximum theoretical dispersion (see Fig. 10) attributed to ωТ = 10 s−1 and the 

experimental one ωТ = 9 s−1 is 1 s−1. As testing of the null hypothesis about the equality of the theoretical 

dispersion DTa = 1.21 sm2 and the experimental dispersion DTa = 1.56 sm2 according to the Fisher F-test 

showed, it does not deviate at the static significance levels of 0.05 and 0.01. 

The satisfactory agreement of the above theoretical and experimental results, as well as the positive 

result of checking the mathematical models of the agricultural bridge equipment for adequacy, indicates the 

possibility of their further use for solving scientific and practical problems. 

 

CONCLUSIONS 

Thus, the adequacy of the conducted investigations confirms the fact that mathematical simulation of 

functioning of the agricultural bridge tools, using the theory of automatic regulation of dynamic systems, is 

quite effectively verifiable. At the same time, for experimental registration of such parameters of the 

agricultural bridge tool as the characteristics of its heading angle and vertical movements, a mobile Android-

based communicator with accelerometer sensors and the Accelerometer Meter application integrated in it is 

sufficient. 

A positive result of checking for adequacy the functioning of the mathematical models of the TSATU 

agricultural bridge equipment that we developed earlier indicates the possibility of their further use for solving 

scientific and practical problems. 
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