УДК 004.9; 514.2

## КОМП'ЮТЕРНЕ ПРОЄКТУВАННЯ ПРЕС-ФОРМИ ДЛЯ ВИГОТОВЛЕННЯ ПЛАСТМАСОВИХ ВИРОБІВ В СИСТЕМІ POWERSHAPE

| Щербина В. М. <sup>1</sup> , к.т.н.,    | e-mail: viktor.shcherbyna@tsatu.edu.ua     |             |       |        |
|-----------------------------------------|--------------------------------------------|-------------|-------|--------|
| Мацулевич О. Є. <sup>1</sup> , к.т.н.,  | e-mail: oleksandr.matsulevych@tsatu.edu.ua |             |       |        |
| Валієва К. Р. <sup>1</sup> , студентка, | e-mail: kvalieva.k@gmail.com               |             |       |        |
| Каплій В. Ю. <sup>1</sup> , студент.    | e-mail: nezex2003test@gmail.com            |             |       |        |
| <sup>1</sup> Таврійський державний      | агротехнологічний                          | університет | імені | Дмитра |
| Моторного                               |                                            |             |       |        |

## Актуальність досліджень та постановка проблеми.

В даний час, вироби з пластмас широко використовуються у всіх сферах діяльності людини, оскільки відрізняються легкістю, міцністю, зручні в експлуатації і економічні. Більше третини всіх пластмасових виробів виготовляються методом лиття під тиском. Даний метод використовується в умовах серійного і масового виробництва і передбачає конструювання пресформи для виготовлення виробів. На сьогоднішній день висока технологічність і конкурентоспроможність такого виробництва забезпечується багато в чому завдяки використанню верстатів з ЧПУ і систем автоматизованого проєктування (САПР), особливо якщо мова йде про проєктування виробів складної конфігурації. Виходячи з цього можна зробити висновок про те, що комп'ютерне проєктування прес-форм для виготовлення пластмасових виробів в системі PowerSHAPE є актуальним.

Завданням даної роботи є проєктування пластмасового друшляка з привабливим сучасним дизайном і у відповідності всім конструкторським і технологічним вимогам. Рішення поставленого завдання складалося з таких етапів:

1. Розробка дизайну друшляка, побудова в CAD-системі PowerSHAPE тривимірної моделі виробу і її технологічне опрацювання.

2. Конструювання прес-форми для лиття під тиском за допомогою модуля Toolmaker;

3. Розробка керуючих програм для фрезерної обробки деталей прес-форми (в проєкті представлена на прикладі найскладнішою деталі - вставки пуансона) в програмі PowerMILL.

4. Побудова рельєфів і створення УП для їх гравіювання в програмі ArtCAM.

5. Розробка керуючих програм для токарної обробки в FeatureCAM.

Основні матеріали дослідження.

На етапі моделювання виробу в програмі PowerSHAPE здійснювалося проєктування моделі друшляка, з урахуванням його матеріалу і технології виготовлення - методу лиття під тиском. Друшляки планується виготовляти з поліпропілену марки 21030-16Н (ГОСТ 26996-86). Усадка матеріалу становить 2%. Максимальна температура експлуатації виробів з ПП 21030-16Н без навантаження - 100-110 ° С.

При проєктуванні необхідно було врахувати наступні вимоги:

- Модель повинна бути позбавлена піднутрень, щоб її виготовлення не вимагало додаткових пристосувань, які б ускладнили конструкцію прес-форми, збільшивши тим самим, її вартість.

- Для рівномірності усадки полімеру в процесі охолодження бажано щоб товщина стінок виробу була однакова, або відрізнялася незначно.

- У моделі повинні бути присутніми всі необхідні ухили і заокруглення, що забезпечують легке вилучення моделі з ливарної напівформи.

Моделювання проводилося в гібридному проектувальнику PowerSHAPE. Основні етапи моделювання представлені на рис. 1-6.

Матеріали I Всеукраїнської науково-практичної інтернет-конференції «Сучасні комп'ютерні та інформаційні системи і технології»



Рис. 1. Отримання заготовки

Рис. 2. Додання заготовці потрібної форми



Рис. 3. Визначення товщини моделі. Отримання отворів



Рис. 4. Моделювання бортів друшляка



## Рис. 5. Моделювання додаткових елементів

Рис. 6. Готова модель

Після побудови моделі було проведено її технологічний аналіз. Для цього PowerSHAPE має необхідний набір інструментів. Перше на що було звернуто увагу при проєктуванні, - негативні ухили (аналіз моделі представлений на рисунку 7). Було виявлено, що поднутренія в формі повністю відсутні. Потім за допомогою функцій «аналіз товщини» і «динамічний перетин» (рисунок 8) був проведений аналіз товщини стінок виробу - товщина однакова, незначно відрізняється лише в місцях технологічних ухилів.

Також був проведений «аналіз кривизни» поверхні - виріб має всі необхідні заокруглення. Таким чином, всі вимоги до проєктованого виробу були виконані.

Фотореалістичне зображення проєктованого виробу, отримане в системі PowerSHAPE, показано на рисунку 9. Матеріали I Всеукраїнської науково-практичної інтернет-конференції «Сучасні комп'ютерні та інформаційні системи і технології»



Рис. 7. Аналіз нахилів

Рис. 8. Динамічний перетин



Рис. 9. Фотореалістичне зображення

Другим етапом у виготовленні виробів методом лиття під тиском є проєктування прес-форми. Прес-форма являє собою досить складний виріб, який складається з безлічі деталей, і процес її конструювання без використання САПР може зайняти досить багато часу і буде вельми трудомістким. Тому для проєктування прес-форми використовувалася система Toolmaker.

Зазвичай, побудова прес-форми в Toolmaker починається з використання інструменту Mold Die Wizzard. Однак в даному випадку, через нестандартну систему охолодження матриці і пуансона, формотворчих елементів були змодельовані в системі PowerSHAPE і потім перенесені в Toolmaker. Моделі матриці і пуансона представлені на рисунках 10 і 11 відповідно.



Рис. 10. Модель матриці

Рис. 11. Модель пуансона

На наступному етапі проєктування форми використовувалася функція Moldbase Wizard. І були введені наступні параметри:

1. Базовий каталог: HASCO.

2. Розміри прес-форми: 630х435 мм.

3. Базовий тип: стандартна прес-форма (включає в себе опорну плиту, бруси, систему виштовхування).

- 4. Напрямні колонки в нерухомої частини.
- 5. Прес-форма складається з наступних плит:
- Плита кріплення верхня. Тип виробу: К10.
- Код виробу: 630х435х30 / 1730 (1730 матеріал).
- Плита пуансона. Тип виробу: К20. Код виробу 630х435х35 / 2162.
- Плита опорна. Тип виробу: К30. Код виробу: 630х435х20 / 1730.
- Плита штовхачів (плита поршня). Тип виробу: К60. Код виробу 630х300х15 / 1730.

- Плита хвостовика (плита поршня опорна). Тип виробу: К60 (стандартна). Код виробу 630х300х15 / 1730.

- Бруски опорні. Тип виробу: К40 (стандартна).

Код виробу 630х435х75 / 1730.

- Плита кріплення нижня. Тип виробу: К11 (виступ по ширині). Код виробу 630х435х30 / 1730.

- 6. Компоненти:
- Колонки направляючі;
- Втулки напрямні;
- Гільзи центруючі;
- Гвинти нерухомої частини;
- Гвинти рухомої частини;
- Гвинти опорної плити поршня;
- Фланець інсталяційний;
- Опорні шайби;
- Опорні гвинти з шайбою.

Розміри компонентів залишаємо запропоновані за замовчуванням. Після застосування функції Moldbase Wizard прес-форма виглядає так, як показано на рисунку 12.



Рис. 12. Використання Moldbase Wizard

Наступний етап - вибір додаткових елементів за допомогою функції Component Wizard. Були обрані наступні елементи:

- литникова втулка;
- хвостовик;
- додатковий інсталяційний фланець.

Решта відсутні елементи, наприклад, стрижневі знаки для отримання отворів, через особливості конструкції формотворчих елементів були

змодельовані окремо і додані в Toolmaker «в ручну». Після використання функції Component Wizard прес-форма виглядає так, як показано на рисунку 13.



Рис. 13. Використання Component Wizard

Останній крок у проєктуванні прес-форми - система охолодження. Система охолодження форм для лиття термопластів під тиском відповідальна за рівномірне і інтенсивне охолодження виливки по всьому об'єму. Канали охолодження повинні огинати такі деталі форми, як виштовхувачі, напрямні колонки і кріпильні гвинти.

У Toolmaker проєктування каналів охолодження здійснюється за допомогою функції Cooling Wizard. Але, через особливості конфігурації виливки і її розмірів, в прес-формі використовується нестандартна система охолодження, проєктована ще при моделюванні матриці і пуансона в системі PowerSHAPE.

Висновки. В даному проєкті була розроблена готова до впровадження у виробництво технологія виготовлення друшляка з поліпропілену.

Проєкт був виконаний з використанням наступних засобів автоматизованого проєктування та розробки керуючих програм для верстатів з ЧПУ: PowerSHAPE, Toolmaker, PowerMILL, ArtCAM, FeatureCAM, Exchange. Використання цих програм скоротило трудомісткість і час проєктування, без втрати його точності. Створення в системах PowerMILL, ArtCAM і FeatureCAM керуючих програм для високоточної обробки дозволило автоматизувати процес виробництва, отже, скоротити час і трудовитрати на виготовлення деталей прес-форми.

## Список використаних джерел:

1. Бобров В. Ф. Основы теории резания металлов. М.: Машиностроение, 1975. 344 с.

2. Холодняк Ю. В., Гавриленко Є. А., Івженко О. В., Найдиш А. В. Технологія моделювання поверхонь складних технічних виробів за заданими умовами . Праці Таврійського державного агротехнологічного університету. Мелітополь: ТДАТУ, 2019. Вип. 19(2). С. 257-263.

3. Пихтєєва І. В., Дмітрієв Ю. О., Антонова Г. В., Спірінцев В. В. Методика моделювання пласких обводів дугами парабол при виконанні лабораторних робіт здобувачами вищої освіти ТДАТУ. *Розвиток сучасної науки та освіти: реалії, проблеми якості, інновації*: матер. Міжнародної наук.-практ. інтернет-конф. м. Мелітополь, 27-29 травня 2020р. Мелітополь: ТДАТУ, 2020. С.271-275.